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Prologue 
 ‘ We dance around in a ring and suppose. The secret sits in the 
middle and knows’  ( Robert Frost) 
 
 
1 Design and  explanation 
 
The possibility of explanation through  causal inferences is often  at the 
forefront as a priority in the planning of  statistical investigations. It is well 
known that in the social sciences such investigations can rarely have the 
design conditions that make such inferences in  physical and some  biological 
sciences very tightly based. Classical statistical methods and inference have 
their roots in investigations in such areas, and in particular the stimulus given  
by agricultural experimentation. The notion of random allocation of 
experimental subjects to treatment groups or conditions has been at the heart 
of this tradition. Complex designs emerge as necessary to  conduct 
investigations with sufficient statistical precision and to encompass more 
intricately combined treatment effects. It is of course the even greater 
complexity of social processes , even if random allocation of individuals to 
interesting conditions were possible,  that makes these design conditions 
more difficult to establish. 
 
Causal explanation in the social sciences is in most senses far too  wide a 
philosophical concept  for statisticians  to encompass it as the preserve of 
themselves alone. Statisticians, however,  have a role to play in designing 
studies which will bear the weight of substantive inferences from collected  
data. They also aid in developing appropriate analytical techniques  to further 
the aims of explanation when strict design conditions are far from ideal. 
Inappropriate inferences are often made by inexperienced users of statistical 
methods , who do not respect the conditions of design under which data has 
been collected. We will discuss later, for instance how cluster structure of  
sample data either by design or by necessity needs to be explicitly considered 
before meaningful analyses can emerge.  
 
In both design and analysis there must be an interplay between the statistical 
treatment of data and the theoretical underpinnings of the subject matter. The 
latter can  only be  informed by  experts in that subject matter and not the 
statistician. If a causal theory is under review the statistician attempts to 
provide the best approaches possible given the limitations of the available 
design and data. He might also have informed the design of the data 
collection had he been consulted beforehand. Far too often inadequate or 
incomplete data have been collected through deficient design. The dialogue 
between statistician and subject specialist is a necessary  pre-requisite of 
good explanation. The range of statistical approaches to ( causal ) 
explanation have also  expanded  from traditional analysis of  designed 
experiments to statistical modelling of complex processes. Much has been 
achieved towards developing explanations by the modelling of data collected 
in ways to reflect these processes but  which depart from strictly controlled 
and randomised designs. However, to be successful models of the process 
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and data must be informed by theoretical and empirical knowledge of the 
process. Any statistical model attempts to approximate  the realities of the 
world given the design and conditions under which the data has been 
collected. In uncovering explanations of phenomenon or evaluating them they 
are only as good as the data collected and the thought that has gone into how 
it is collected. The aims of statistical modelling are  broad but as part of the 
strategy of suggesting causal explanations they have a role to play, providing 
that role is not  imposed too rigidly. The general area of causal explanation 
from  non-experimental data is too deep , and possibly  too difficult a subject , 
to be fully explored here. However, in the case studies to be discussed we 
hope some insight may be gained into these issues. We will see that by 
careful statistical modelling and careful attention to what data is collected and 
how, we may get somewhere in the thorny problem of attempting causal 
explanations. Some potential explanations may be ruled out  if taken  in 
conjunction with informed substantive theory. Perhaps more importantly 
evidence may also be gathered in favour of others.  Deterministic proof of the 
existence of  a causal explanation can rarely or never  be established but 
attention to adequate modelling and design may  propagate evidence of  its 
plausibility. We hope to give some indication of  some of the conditions under 
which developing advanced statistical methodology can further this end. 
 
However, unless there is the real  constructive interplay between subject 
specialist and methodologist some misunderstandings about the role of 
modelling in explanation may arise. A worthy set of criticisms and 
recommendations of school effectiveness research which focuses to a large 
extent  on explanation in statistical modelling is  provided by Coe & Fitz-
Gibbon (1998). Many instances are cited of where more is often read into 
model fitting results by statistically unaware  observers  than the 
circumstances or the model assumptions warrant. However, to anticipate the 
later discussion of the role of control variables in modelling, we may take on 
board one of their  particular criticisms.  Broadly this objects to the inclusion  
of certain types of control as explanatory variables in the statistical models 
used. They say ‘An example of such ungrounded modelling may be found in 
the use of such variables as ‘sex’ or  ‘ethnic origin’ which ‘explain’ ( in a 
statistical sense) part of the variation in outcomes, but which do not explain 
differential performance in any true sense—unless it is argued that effects 
result from purely biological differences or from unfair discrimination’  They go  
on to argue that this results in  stereotyping of all girls, for instance,   rather 
than focusing  on some  more direct explanation, e.g. gender differences in 
spatial visualisation skills ( Hodgson (1995)). It might be noted that implicitly in 
this criticism  is a notion  that  the interpretation put on the  model gender 
effect is a causal one. No statistician would countenance this. However, it 
must also be recognised that there is another aspect to the use of  modelling 
in explanatory research that has not been considered. If gender effects are 
established by the model then this has uncovered a phenomenon that is in 
search of an explanation. If enough data and attention to study design had 
been informed by theoretical and empirical knowledge then competing 
explanations could be evaluated by more extended modelling. Indeed Coe 
and Fitz-Gibbon echo a refrain that will be repeated in the cases studied in 
this paper. There is often a  need for collection of more detailed and relevant 
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information that might inform this quest for explanations in  causal terms. It is, 
perhaps, a little unfair to focus on modelling and statistical analysis for 
exaggerated substantive conclusions. In any case it is the use of such 
variables as controls rather than as potential direct  causal factors that  merits 
their inclusion in models.  Whatever the nature of the explanations for gender 
differences they may nevertheless exist. It  is the impact of these gender 
differences on other modelling objectives that are of interest. To use 
experimental terminology the ’treatments’ may be schools and differences 
between them are of interest. In the absence of the ability to randomly 
allocate pupils to schools, controls over important pupil differences in the 
schools must be exercised. Gender may be a proxy for many other interesting 
but unmeasured direct causal influences on performance, but this need not 
matter. If  differences in performance due to schools are the object of inquiry 
then other potential effects on these differences must  be ‘ironed out’. A direct 
causal interpretation of gender differences need and indeed usually should 
not enter into the picture at all. However, its inclusion in a model may advance 
evidence of other sources of causal explanation of school differences 
 
As a  prelude to his introduction to multilevel models in the context of school 
effectiveness Goldstein (1997)  draws attention to practical difficulties in many 
areas of educational  research of experimentally manipulating and 
randomising over conditions of interest. Thus the strict  conditions that makes 
causal attribution firmer are often unavailable. Much the same could be said 
of work in most other social sciences. Thus in the real world we must  see 
how closely we can approach this by using data and statistical tools that 
happen to be available or can be developed .In planning an investigation  
from scratch and  with more attention to the experimental  ideal we may for 
instance design a survey  that reflects the structure of a process with  
theoretical propositions about relationships also in mind.  To take a simple 
example if we were interested in both individual and primary school 
differences in  educational progress we would not  simply take a national 
simple random sample of primary school children. There might be too few 
students per school to make adequate inferences about school differences. 
The situation requires a clustered design of some sort. We would also ensure 
that we collected sufficient data relevant for the context of the inquiry at both 
school and individual levels. We would also develop models to reflect the two 
level process and clustered design. In some cases we are not free to make 
judgements about design and data collection  and must perforce rely on data 
collected for a wide variety of other purposes. Later an example is discussed 
of where profitable use can be made of routine administrative data providing 
the limitations of such data are recognised. At the heart of any  attempts at  
explanation, experimentally based or otherwise, is the development of 
adequate statistical models, reflecting not only the available data but also how 
it has been collected.  
 
Even where elements of  experimental manipulation are possible there is 
pressure of time and resources. In observing relationships between design 
factors and outcomes we might try to reach a ‘causal’ understanding of what 
‘appears’ to matter ( Goldstein ( 1997). There still  remain possible 
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explanatory factors not explicitly informing the design, though expert 
grounding in theory and subject matter should have considered many of them. 
There is also no guarantee that relationships will remain stable in the future 
since relationships may change with changing educational and social 
conditions. Putting the experimental investigation into context is often difficult. 
In a current climate of a concern with ‘evidence based’ policies there is a 
strong pre-disposition to discount all but experimental evidence. In evaluation 
of specific school improvement programme initiatives  evaluation by such 
approaches may be possible.  However, Coe and Fitz- Gibbon ( 1998)   
consider that much experimental evidence to date in these areas are 
disappointing for a variety of reasons. For instance, they claim that 
improvement initiatives are often carried out within changing educational 
conditions. This precludes the establishment of effective control groups which 
makes it difficult to conclude what might have happened without the initiative. 
Another point they stress is  the short term nature of many outcomes in such 
experimental evaluations.  These make prognostication about long term 
sustenance of these effects difficult to ascertain. The important  issue of the 
effect of class sizes on pupil progress has also received much attention with 
the large scale randomised controlled trial ( RCT) Tennessee STAR study to 
the forefront ( Word et al ( 1990)).  A thorough review of the difficulties of 
making causal inferences about class size effects even under supposedly 
RCT conditions is provided by Goldstein and Blatchford ( 1998). The issues 
they raise also have much broader relevance and is a good reference for 
further detailed study of the potentialities of RCTs.. Apart from the question of 
changing historical conditions previously mentioned they raise some  other 
important issues. The first is one of selection of experimental schools. The 
STAR study, for instance required extensive  resource and time commitments 
by participating schools. This may make such schools atypical in ways that 
also affect  the relationships under investigation.  Further even if 
randomisation were possible it is only possible within schools, and different 
schools have different sizes and methods of organisation , for instance. 
Conclusions applying to large schools may well not apply to smaller ones and 
so on. There is also the difficulty of designing for interactions, e.g. . how 
compositional effects of the class in terms of ability mediate results. Another 
matter is that there is no real  possibility of independence of ‘treatments’ 
within a school since teachers and students interact and this may contaminate 
the relationships. Also present since trials cannot be  blind is the possible 
contamination by expectations or ‘Hawthorne’ effects. 
 
Thus even many attempts at experimental manipulation pose limits to 
potential causal explanations. The examples of  limitations discussed above 
are due to factors which are neither controlled by design nor can be dealt with 
by randomisation In design. To avoid  problems requires adjustment for the 
factors in various ways in order to reach causal understanding.  This can only 
really be done by exploratory analytical investigation incorporating relevant  
adjustment controls in formal statistical models. In principle these are the 
same sort of analytical models employed in  investigations of explanation from 
observational or survey studies. 
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Advanced extensions to such models for explanation in observational studies 
or to data from administrative sources are the main focus of this paper. Thus 
we  might outline in a technical way some of the main features by which they 
achieve explanatory ends. The model is the mechanism by which we attempt 
to adjust for relevant factors. As Goldstein ( 1995) points out in the context of 
the study of school effectiveness we have no control over which children 
attend which schools, or are assigned to which teachers, classes or teaching 
methods.’ The best we can do is to try to understand what factors might be 
responsible for assigning children to schools or teachers to ways of organising 
teaching’  The aim is to measure accurately along all dimensions possible 
ways by which individual pupils differ, e.g.  prior ability ,  and by which schools 
differ on  factors  beyond the school’s  control. If we could adjust for all of 
these we have achieved what is  often regarded as the paradigm of school 
effectiveness research ‘ a comparison of like with like’ 
 
Thus the attempt is to try through data analysis to deal with limitations 
imposed by lack of ability to experiment. The  only constructive way that many 
factors can be simultaneously  adjusted in analysis  is through a framework of 
a statistical model. In this sense the adjustment results in comparisons  in a 
‘typical’ constant environment. If all possible explanatory factors had been 
considered we might get somewhere towards achieving the ideal: the 
attribution of school differences to the causal influence of school effects per 
se.  Through the use of formal models the effect of potential explanatory 
factors is handled through the model analysis rather than through ideal 
designs. However, a modelling framework can also at the same time evaluate 
whether and in what ways the differences on crucial variables  between pupils 
and schools affect the outcomes. It  has often been  argued that in the 
absence of randomisation there may be many other factors which can explain 
differences and which have  not  been explicitly considered or measured. 
Three things can help here.  First  theory and prior research should  guide 
detailed model investigations with such factors. Secondly a precondition for 
this is the availability of information on relevant variables which in turn means 
acquisition of a range of relevant good data. Thirdly the operation of 
unmeasured influences which may operate on outcome differences are 
assumed to not systematically affecting the main relationships of interest. 
The incorporation of random variables in models to reflect these is a proxy for 
random allocation in design. If a variable has an effect that is  systematic then 
we should be considering it  explicitly and we are back to the necessity for 
good theory and data. Problems may arise  not from  the use of modelling 
tools but in the lack of prior conditions in particular circumstances  for 
developing a good model. This point is made by Coe and Fitz-Gibbon (1998) 
in their critique current modelling methodology to explain and assess  real 
school differences in  terms of  ‘value-added’. Sets of theoretically perfect 
controls are  often unavailable. Thus they say. ‘ In practice, therefore, any 
measure of value added which  we may calculate may be thought to as an 
attempt to measure ‘pure’ value added that is biased towards unadjusted raw 
performance.’ This critique has a great deal of merit. However, the force of 
their arguments seem to be directed towards the modelling methodology itself 
rather than the real recognition of the need for informed investigation and 
better data. The interplay between statistician and subject area expert  
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emphasised above needs much further development Thus Goldstein (1997) 
says ‘ The task facing school effectiveness research is to try to establish 
which factors are relevant  in the sense that they differ between schools and 
also they may be causally associated with the outcomes being measured. In 
this respect most existing research is limited, contenting itself with one or two 
measures of academic achievement and a small number of school and other 
background variables, with little attempt to measure dynamically evolving 
factors during schooling’ . The lesson appears to be that there are now a 
developing range of good modelling methodologies. However,  what is lacking 
and  required is deeper thought about the processes and data to inform 
modelling strategies to  advance explanation.  
 
For those interested in school effectiveness or more generally student 
progress research the article by Coe and Fitz-gibbon (1998) offers much that 
is thought provoking. It offers many warnings and suggestions for ways 
forward in the complicated area of causal explanation in  research in 
education and other area. For instance there is the  wide  practice of 
establishing  group (school) differences in outcomes  a priori and then  ex 
post facto searching  for related characteristics by which the  schools differ. 
This is  roundly condemned as an extreme form of the abuse of the general 
principle that ‘correlation is not causation’ However, as implied by some of our 
previous discussion many of their valid  and relevant  points seem to be very 
much misdirected against modelling frameworks and attendant statistical 
methodology. These may be at fault occasionally but pre-requisites for  the 
choice of an appropriate models are sound educational thinking and  
availability of relevant information. 
 
In developing some extensions of multilevel methodology in the present  
paper we indirectly address two further particular concerns mentioned in 
these cited references.  Firstly we recognise that in modelling the outcomes 
are often measured inappropriately.  Ordered grades which form  many 
response  variables are not  intervals on some  arbitrarily chosen  interval 
measurement scale. Secondly by  the use of cross-classified effects we go 
some way towards reflecting the complexities of processes under review. 
In education it is becoming recognised that different classes within schools 
often have stronger effects than differences between schools. Further  the 
effects of classes may be a combination of several interrelated effects, e.g., 
teacher  subject, history of pupil group and so on. Basic multilevel models 
have provided a framework for explanatory separation of hierarchical effects, 
such as pupils, classes and schools. Such modelling has  been cited by 
Goldstein (1997) as one of the minimum requirements for effective 
explanation. The aim will now be to disentangle effects operating within levels 
in a way that makes optimum use of available data. As Raudenbush (1993) 
has noted,  these developments may be viewed as part of a long term effort to 
develop analytical tools that correspond to those familiar in classical 
experimental investigation but which have greater flexibility. Part of this 
flexibility is a scientific approach to isolating explanatory effects which add to 
the possibilities of making causal attributions. Complex structures both of 
process and data require fairly complex modelling and extensive relevant 
data. 
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2 Basic multilevel modelling in hierarchical social structures 
 
In complex social structures, and not the least in education effects which we 
wish to evaluate, unravel and explain operate in complex ways. Not the least 
important of these is the hierarchical  structure of these processes. It is 
important that  investigation designs, data collected, and models used in 
analysis reflect this hierarchical structure. It has become recognised over the 
past decade that multilevel statistical models are the appropriate way of 
reflecting this complex structure. Such models enables the derivation of 
information about relationships among measurements operating at different 
levels simultaneously. They also provide a framework for exploring 
explanations of these relationships. In combination with the caveats and 
principles  raised in the introductory section they also provide the background 
for evaluating causal mechanisms. 
 
Multilevel modelling  can get quite complex  with a growing body of 
applications in diverse areas.  The classic generic paper is Aitkin & Longford 
(1986). A thorough  technical discussion of the theory, methodology and 
range of applicable models is Goldstein (1995). In education  Bryk and 
Raudenbush (1992) provide a detailed account of the principles of the models 
and methodology but could be understood by researchers with some 
advanced training in statistical methods There are appearing a growing 
number of articles and texts dealing with the diversity of applicable subject 
matter (Reise & Duan (2000). Here we follow Goldstein ( 1995) in presenting 
fairly briefly the basic ideas with a minimum of statistical complexity as 
background for more advanced type of models in later sections. 
The articles by Paterson ( 1990), Paterson & Goldstein (1991) and  Plewis 
(1998) provide more thorough but basic introductions. 
 
In one of case studies later we have results on Key Stage 1 Standard 
Assessment Tasks (SATS) of children in the primary schools in Birmingham 
Local Education Authority. For analytical purposes we might treat this as a  
clustered design of samples of schoolchildren within a sample of schools. 
Here we look at the Mathematics Test and assume  it to be scored as points 
on an underlying  interval level scale  Later we will see there may be more 
appropriate ways of treating graded responses and we will examine the 
Reading test with this in mind.  The most simple multilevel model attempts to 
relate the  test outcome or response to  children’s attendance at different 
schools. It may be noted that as it stands such a model is limited as an  aid to  
the evaluation of explanations, but it forms a base model against which further 
developments may be assessed. Such base models usually form the standard 
in most published applications. 
 
If yij  is the response of the i-th student in the j-th school the base two level 
model is  
 

ij j ij

j ij

y e

u e

β

β

= +

= + +
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So far this is  a fairly simply understood  characterisation which specifies that 
the response can be formed as the addition of a school contribution ( level 2) 
to an individual student contribution (level 1). The school contribution  jβ  can 

be broken down into  the overall mean β  and the school ‘residual’ ju . The 

terms ije  are  the deviations of the individuals’ responses  from their school 

contributions. The latter are sometimes referred to as level 1 residuals or 
individual model disturbances.  
 
If we were interested only in the particular schools in the sample the above 
model is in effect only a re-parameterisation of the simplest of traditional  one 
way fixed effects analyses of variance. However, to further explanation and to  
be able to generalise about schools at large we need to consider the selected 
schools as randomly drawn. This involves treating the ju  as unobserved 

sample drawings from some distribution. Typically we may assume that  these 
school residuals have a normal distribution with mean zero and a variance of 

say , 2
uσ . The student  residual is also assumed normal with variance 2

eσ . 
 
With this framework in mind  to further explore explanations in our model we 
might wish to examine the impact of  other explanatory variables. It has 
generally been found that in educational achievement the most powerful 
predictor of educational achievement at some stage is a measure of 
achievement at earlier stages. We may want to include this measure as an 
explanatory variable both to assess its importance on individual achievement 
in its own right and also to  adjust  school differences in outcome for their 
initial differences, The latter is the controlling aspect we have discussed at 
some length, although there is a long way to go in making causal attributions. 
In our example we have a baseline  measures of achievement at entry to 
reception classes. The model becomes   
 

0 1ij ij j ijy x u eβ β= + + +  

 
where xij  is the baseline achievement measure and 1β  is average predicted 
increase in KS! Mathematics score for a unit increase in baseline 
achievement. The residuals uj now represent the difference between the 
mean KS1 score for each school for any given baseline level and this mean 
for the population as a whole. 
 
It is clearer to see from this model another reason for the multilevel model 
with the school term  It might even be the case that we were only interested in 
assessing the extent to which prior ability influenced individual achievement at 
KS1  and wished to leave the question of school differences aside. The 
temptation might be to  consider a simple model which ignores the clustered 
sample design and fit  by  standard ordinary least squares (OLS) a model of 
the form 0 1i i iy x eβ β= + + . Here the model is fitted to all children and their 
school membership is ignored. Earlier studies of educational achievement ( 
Coleman et al (1996), Rutter et al ( 1979)) were of this type. Apart from the 
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fact that little can be said about the influence of schools, another problem is 
poor estimation of the parameters βo  and β1.  An assumption which lies 
behind good estimation from OLS is the independence of the disturbances ei. 
Yet  we know that due to the hierarchical nature of the process, design and 
data  the ei  in the same school will not be independent. They will be 
correlated due to common influence of the school effect as evidenced by the 
fact that we know ei is really the sum of two components (uj+eij). This intra-
school correlation is often a phenomenon of interest I its own right  It is well 
known that it leads to incorrect estimation of standard errors and biased 
inferences about the parameters, e.g. confidence intervals that are too narrow 
and optimistic. Standard texts in econometrics ( e.g. Greene ( 1999)) provide 
a good reference to this problem. Thus even if the main interest was in 
regression slopes in these simple models  we still need to take cognisance of 
the multilevel structure and develop  estimation procedures accordingly. Of 
course if we were interested in school effects as well , as we usually are, a 
multilevel model becomes very much a practical necessity. 
 
 Base Variance Components 

Model 
Model with reception baseline 
achievement controls 

Fixed Parameters Estimate Standard Error Estimate Standard Error 
Intercept 0.012 0.05 0.018 0.03 
Baseline test 
assessments: 4-
points: 
standardised 

    

Number   0.30 0.016 
Algebra   0.18 0.015 
Shape and Space   0.02 0.017 
Data handling   0.10 0.017 
Speaking and 
Listening 

  0.09 0.016 

Reading   0.11 0.017 
Writing   0.08 0.018 
     
Random 
Parametrs 

    

School variance 0.19 0.027 0.17 0.030 
Pupil variance 0.83 0.009 0.55 0.014 
Intra-school 
correlation 

0.20  0.22  

 
Table!: Multilevel  models for KS!: Mathematcs: Variance component model 
and model with baseline assessment  adjustment 
 
Table 1 above presents results of the two basic  variants of these simple 
models. Full analyses are given in  Fielding (1999).The response variable has 
been scored 0-4 for the four levels and then linearly transformed to 
standardied to have mean zero and standard deviation unity on the whole 
sample. The only difference in Table 1  is that a full set of baseline measures 
are introduced in the control but no differences of principle are evident. In the 
base model a first question of interest is the size of the school variance on 
KS1 mathematics relative to that of students within them. This provokes 
further thought about  how to develop the explanatory model further. It must 
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also be noted that this represents variation in raw unadjusted achievement in 
a model without control variables. Thus interpretation of results in substantive 
terms must proceed with caution. Even small school variation In the  base 
model should not be taken at face value as suggesting uninteresting school 
differences. It is possible, as Fielding (1999) shows that this variance can 
actually increase on introduction of control explanatory variables. This will be 
recognised as a possible  suppression effect for those knowledgeable about 
causal analyses. In the simple base model and since we assume that uj and 
eij  vary independently  the total variation is  
 

2 2 2
0( ) ( )ij ij u eVar y E y β σ σ= − = + = 1.02 

 
The proportion of variance in responses that is attributable to schools is 

2 2 2/( )u u eσ σ σ+ =0.20. This is also the value of the correlation of outcomes 
between two pupils in the same school  that we have called ‘intra-school 
correlation’. When we introduce the prior ability variable the regression 
coefficients show the size of the effect  of that variable and the standard 
errors provide a basis for classical hypothesis testing procedures about those 
effects. Importantly, in working towards explanations we can evaluate the 
changed size of the variances. Naturally the individual  level 1 variance has 
been considerably  reduced by 50%  emphasising the importance of  prior 
ability on explaining individual variation in achievement at KS1. The school 
variance has also changed but not by much in this model reflecting the efect 
of the aggregate intake ability characteristics on overall differences between 
schools. 
 
We have said very little so far about methods of estimation of these and much 
more advanced multilevel models, other than recognising that standard OLS 
regression procedures are inappropriate. Estimation is achieved by a variety 
of sound statistical procedures available in specialised software. In practice 
the two most common are the HLM ( Bryk & Raudenbush (1992)) and the 
MLwiN (Rasbash et al (1999). The latter deals with many advanced  
modelling procedures which are not incorporated elsewhere and in addition a 
flexible macro language that permits flexible adaptation. MlwiN and its macro 
facilities are used for the developments in this paper. The latest version also 
incorporates many Markov Chain Monte Carlo ( MCMC) Bayesian 
approaches which are becoming popular and which up to have been widely 
available in the BUGS package ( Gilks, Richardson & Spiegelhalter (1996)). 
The standard large statistical packages such as SPSS do not provide much 
but SAS, STATA and econometric packages such as LIMDEP deal wit a few 
very limited variants. 
 
MlwiN also provides facilitates for estimating the residuals from a multilevel 
model which are of obvious direct interest. The level 2  residuals from the 
base model may be  viewed as estimated school effects on raw performance. 
Residuals in models with control factors may be taken as estimates of 
‘adjusted school effects’ and as such have been taken as a basis for ‘value-
added’ assessments since they more  nearly reflect  differential progress 
between schools. Goldstein ( 1995, 1997) shows that the residuals estimated  



 

 

12 

12

 
 
Figure 1: School residuals and uncertainty intervals   on KS1 Mathematics 
after adjustment for baseline assessments.. 
 
by multilevel procedures are ‘shrunken’ in the sense that information on their 
distribution from all schools is used to correct for the fact that otherwise  
estimates based on schools with a small number of observations are very  
imprecise. This issue of shrunken estimates will not be explored further 
Figure 1 below plots the school  residual estimates from our basic model 
adjusting for baseline achievement at reception. Naturally being statistical 
estimates they are subject  imprecision and uncertainty due to sampling 
errors.  Their  standard errors can also be estimated as part of the model 
fitting procedure. Thus the residuals are ordered by value and surrounded by 
95% confidence bands in a ‘caterpillar diagram’, of the sort that has become 
familiar in literature. The explanation of the use of the multiplier 1.4 is given by 
Goldstein and Healy (1995). A well known feature of such caterpillar diagrams 
in progress research, however much control is exercised, is also exhibited in 
this figure. There is considerable overlap of the intervals with 50% of them 
covering the overall mean of zero. Thus attempts to rank or separate schools 
in league tables, even where there has been proper adjustment is subject to a 
high degree of uncertainty ( Goldstein & Spiegelhalter ( 1996)).  
 
Estimates of residuals at both levels also have extensive use as diagnostics in 
selecting appropriate models, making judgements about the adequacy of 
models,  checking the appropriateness of assumptions, and generally to guide 
the details of further model exploration and development (Goldstein (1995)) 
Any number of potential control or explanatory variables can be added to the 
model above according to the context of the problem or what is understood 
about the process operating. These models then take their place in the 
armoury of equipment available in exploration. In school progress research In 
educational research there is considerable debate about which variables 
should be included according to the purpose at hand or what forms of 
explanation are required. The role of such individual variables as gender, 
ethnic origin , or socio-economic group has been discussed previously. 
School level factors such as type, size and organisational variables such 
leadership etc. may be introduced, if it  was desired to see what effect they 
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might have  in explaining school differences and if adequate  information was 
available. It is also not uncommon to include pupil level aggregates  such as 
school level means on intake ability factors. These provide  measures of 
school contextual features. 
 
There are many other ways in which multilevel models may be extended. Of 
particular importance is to allow the relationships between the response and 
explanatory variables to vary at different levels. These are termed random 
coefficient models and in the context of school research model ‘differential 
effectiveness’. Formally instead of the regression coefficients being fixed 
parameters they may be  allowed to vary at the school level. The simple 
adjustment model above is extended to  
 

0 1 0ij j ij j ijy x u eβ β= + + +  

 
where 1 1 1j juβ β= +  

 
The subscript j on  1 jβ  indicates that each school may have a different slope 

and its difference from the overall average slope is represented by the 
random variable 1 ju . We now have two random variables at the school level 

each with mean zero and a separate variances, 2

ouσ and .  
1

2
uσ . In general they 

can also be correlated and have covariance 
1ou uσ . Thus it might be that 

schools with high intercept residuals have steeper slopes or vice-versa. 
The between school variance now varies according to the particular  value of 

the variable x  and is the quadratic function 
1 1

2 2 22
o ou u u ux xσ σ σ+ + . To  

illustrate the differential effect , the figure in Appendix A is taken from 
Goldstein (1997) from his example of modelling eleven year  old reading 
scores adjusting for eight year old scores. The slopes of three schools are 
presented. What this example illustrates is that there is very little difference 
between the three schools for high ability students but for low ability ones they 
have considerably different effects. It is even possible for the lines to intersect 
for some schools so that a school which has  apparently more impact than 
another school for higher achievers may have the reverse effect for lower 
ones.  A fuller exploration of the importance of these differential regression 
coefficients ids given by  Paterson (1990) and Plewis (1998). 
 
The models are capable of being extended in a wide variety of ways. The 
previously cited range of references convey some idea of the complex 
processes that can be viewed in these ways. A key one is Goldstein (1995). 
For instance their can be many more than two levels. Our advances later will 
deal with the issue of variation between classes within schools ( three level) 
which is becoming recognised as of prime importance. In common with 
familiar linear models interactions between variables may be important and 
these can cut across variables at different levels. There is also the possibility 
of modelling more complex variance at level 1. It has been observed for 
instance that there are not only gender differences in mean achievement 
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levels but  there is also heterogeneity in response variation  for different 
groups such as these. Models are also available for non-continuous variable 
data such as binary responses or count data. Multivariate multilevel models 
have also been developed to deal simultaneously with correlated responses, 
e.g. scores on reading and mathematics at a given educational stage. 
In the next two sections we deal with two specific extensions which deal with 
some of the problems of explanation  outlined in the first section. Firstly we 
consider responses which are ordered categories which up to now have often 
been treated by assuming continuous responses measured as arbitrary points 
scores. Not only are chosen outcomes in research often inappropriate ( Coe 
and Fitz-Gibbon (1998)) but also they are measured inappropriately in 
operation. Multilevel modelling here requires extensions of the single level 
methodology of generalised linear models developed by McCullagh & Nelder 
(1989). Secondly we combine these generalised  approaches with  cross-
classified random effects models to attempt  the disentangling of effects 
operating within levels. We see that effects may also be weighted to mirror 
very unbalanced split plot designs in experimental research. 
 
3 Modelling ordered category responses in a multilevel framework 
 
Many response variables in research are ordered categorisations possessing 
minimal measurement properties, e.g. educational grades, Key Stage 1 
achievement levels, 5-point attitude scaling. Modelling of these often 
proceeds by assigning them arbitrary scores and treating them through the 
linear multilevel models described in the previous section as if they were 
interval scale continuous measurements. There are a number of difficulties 
with this which have been widely discussed in the methodological literature 
but it is the norm in much empirical research. The familiarity, and ease of both 
access and understanding of linear regression models also encourages this 
routine application. 
 
Most critiques of  modelling using scores surround the questionability of many 
of the assumptions which is necessary to make. There a range of such 
objections in the literature and we briefly review them. A fuller review is 
provided in Fielding ( 1999, 2000). 
 
Firstly there is a measurement issue arising from the interpretation of arbitrary 
scored scales as if they were natural, even when used as a modelling device. 
This is really a substantive question since regressions of the score scale may 
be approximately sufficient for some contexts. A typical objection on 
measurement grounds is exemplified by a standard econometrics text: 
Greene (2000) states baldly that , ‘if the responses are coded  0,1,2,3, 0r 4 a 
linear regression would treat the difference between a 4 and  a 3 in the same 
way as a difference between a 3 and a 2 , while in fact they are only a 
ranking’. Substantive meaning has been attached to rank orders  as if they 
were units of measurement. Results based on  grade scores are assumed to 
relate to grades as a higher level unit of measurement.  
 
Secondly when linear models are used, be they multilevel or otherwise, 
questionable assumptions must be made. Do we really believe for instance 
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that effects included in a model operate in an additive fashion on the chosen 
scale rather than some other arbitrarily chosen one, or perhaps a real one 
from which categories have been empirically formed? Points scores scales 
are often chosen as the response scale as a matter of convenience rather 
than anything else. Thus a main questionable assumption may  be  that the 
standard specification of traditional models may not be appropriate for the 
arbitrarily chosen scale . This very arbitrariness of a scored response scale in 
this respect  is  at the root of many objections that have been raised in the 
literature, which is reviewed in Fielding (1999).  
 
A third group of objections surround the discrete nature of the observable 
responses which would arise even if the arbitrary scaling issue were 
resolved.. Distributional aspects  surround the use of linear models which 
assume a continuous ( usually normal) response. There are many technical 
difficulties with this. Some other problems are common to those arising even  
when the observed groups are formed with known cut-points from a natural 
unit of measurement. It is well known that in this situation standard regression 
procedures using category scores (possibly mid –points) can  produce very 
biased regression parameter estimates and incorrect standard errors 
(Haitovsky, 1973; Stewart, 1983). Most models assume conditional 
disturbances and hence responses are continuously distributed ( possibly 
normal ) but this is cannot be  reflected in the operational responses. This fact 
is largely responsible for the estimation problems with regression coefficients. 
Some simulations by Fielding (2000) have shown that this problem has even 
greater impact on variance components and residuals in multilevel models. 
There are other related difficulties connected to the discreteness of the 
response data. McCullagh and Nelder (1989) have raised the issue of 
ambiguity of estimation results or inferences that  can arise  when new 
responses are formed by possibly arbitrary amalgamation of old adjacent 
ones (or their desegregation). If scored responses are used in continuous 
variable regression models rules must be devised for scoring schemes to 
remove these ambiguities. How do we compare effects on GCSE grades for 
instance over time when the A* grade has been introduced. Hedeker and 
Gibbons (1994) also  discuss the distortions that may arise due to  ‘ceiling or 
floor effects’ if grouped scored responses are used in multilevel linear models. 
If, as may be supposed, the end categories reflect open intervals on some 
latent scale then extreme recorded category scores can rarely reflect 
responses to extreme effects of explanatory variables. An earlier contribution 
by McKelvey and Zaviona (1975) discusses  the biases that can arise from 
such effects in  traditional linear regression models. In many investigations the 
finding of significant polynomial terms or complex interactions in explanatory 
variables have been attributed to these distortions due to grouped arbitrary 
scores ( Fielding (1999), Yang, Fielding & Goldstein (2000)) 
 
For standard  single level regression , generalised linear modelling 
frameworks have been developed which deal with most of these questions  
(McCullagh & Nelder (1989)). They model grade distributions directly , impose 
no arbitrary scaling assumptions, and deal with the discrete nature of 
observed data directly.  Here we discuss recent developments in  multilevel 
ordinal response models. We may also see that from a substantive view they 
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may offer also  more useful ways of presenting results and offer more insight 
into the nature of explanatory effects. 
 
Example 1:  Progress in Primary School Education 
 
To assist teachers in meeting learning needs of individual children baseline 
testing programmes have been set up in Local Education Authorities (LEAs) 
in England and Wales.  Very young children are assessed on their joining the 
reception classes of primary schools. It has become possible to trace their 
progress  through  to the statutory Key Stage 1 (KS1) curriculum standard 
assessment  tests (SATs) taken  two years later. The data  used is two level 
with 4444 children in 114 schools from one large LEA. The response outcome 
modelled is a KS1 Reading national test. A  combination of  four  standard 
levels with a fine grading of level two  yields six ordered grades.  
 
In developing a multilevel model for this  response there may be a variety of 
analytical aims. Some of these can  be outlined although generally there is a 
wider  substantive interest in factors affecting educational outcomes. Relating  
outcomes to prior ability measures mainly by linear models has  been widely  
developed in the study of progress, or ‘value added’. It has also been 
recognised that other individual and school socio-economic control variables,  
though often correlated with ability, may  make net contributions to progress. 
Understanding the nature of the combined  contribution of these explanatory 
factors is a particular aim. Such models have informed target setting based on 
known individual characteristics at baseline. To facilitate such exercises the 
assessment of potential explanatory factors is an aim. Sometimes in the 
absence of prior ability  measures targets have been designed  controlling for 
only certain other characteristics. Such targets are also set at the school level. 
Thus implicit in national literacy targets for schools (Department for Education 
and Employment [DfEE], 1997) is the sole use  of percentage of children 
eligible for  free school meals, an easily available measure. Where fuller  
information is available and appropriately modelled,  predictions may assess 
to what extent such procedures are possible. Indeed one of the main aims of 
the models to be discussed is to estimate probabilities of  achieving certain 
grades given  individual profiles on  sets of explanatory characteristics. 
Presented pictorially these are often referred to as ‘chances’ graphs’. In the 
United Kingdom there is also a growing government concern with 
performance indicators, and in particular for schools. The estimation of school 
effects on progress through well-specified multilevel models , controlling for 
relevant variables,  establishes a sound methodological basis for  these.  
Even here, though, caution must be exercised before wild comparative 
conclusions are drawn (Goldstein and Spiegelhalter, 1996). In exemplifying 
the model approaches detailed  substantive results in the direction of  these 
sort of aims will not be  fully explored.  However, they may be seen as 
background  motivating the methodology. A  detailed  substantive account  of 
modelling the KS1 Mathematics test on the same children is given by Fielding 
(1999). There were  sufficient and  considerable differences in progress 
patterns to warrant the separate  analysis of reading. 
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The overall distributions of  the responses are given in the detail of  rows 1-4 
of Table 2. The child  baseline assessment variables were in the seven areas 
of spelling, reading, writing, number, algebra, shape & space, and handling 
data. They are teacher assessments on a four-point scale. Thus they are also 
ordered categories. After investigation, however, it has been found 
satisfactory, to enter them into models as equal interval scales. They have 
been standardised to have mean zero and unit variance over the data.  
 
Table 2: Distribution  over KS1 Reading Test Grades and comparison with 
approximate marginal expectations given by various models. 
 Level  

 
0 1 2c 2b 2a 3 

1 Ordered 
Category Number 

1 2 3 4 5 6 

2 Number 
 

160 871 786 738 532 1357 

3 Sample 
& 

3.6 19.6 17.7 16.6 12.0 30.5 

4 Cumulative 
% 

3.6 23.2 40.9 57.5 69.5 100.0 

5 Model AL 
Cumulative % 

2.8 20.7 39.5 57.9 71.0 100.0 

6 Model AL 
 % 

2.8 17.9 18.8 18.4 13.1 29.0 

7 Model  AP 
Cumulative % 

2.2 20.6 39.5 57.6 70.6 100.0 

8 Model  AP 
 % 

2.2 18.4 18.9 18.1 13.0 29.4 

9 Model  BL at  means  
Cumulative % 

1.3 15.7 38.4 63.2 78.9 100 

10 Model BL at 
means (%) 

1.3 14.4 22.7 24.8 15.7 21.1 

 
Definitions of the range of other  explanatory variables and some summary 
measures given in Table 3. They are mostly level 1 variable. Separate school 
level  data for contextual purposes, such as catchment area data, is 
unavailable. It will be seen , however, that aggregating child variables to the 
school level has formed some context factors.   
 
A basic  two level ordinal model formulation  
 
The response is treated as a set of category indicators. If the categories are 
labelled s=1,2.3,4,5.6, then ( )s

ijπ denotes the set of probabilities that the ith  

child in the jth  school achieves grade s on the KS1 Reading test. Since 
categories are ordered  it is convenient to use the equivalent set of cumulative  

probabilities ( ) ( )

1

s
s h

ij ij
h

γ π
=

= ∑ , the probability of achieving at least grade s  Only  

(s-1)=5 of these need be explicitly considered, since by definition (6) 1ijγ = . 

Linear multilevel models  consider effects both fixed and random( school in 
varying individual conditional expectations on a scored response. Random  
variability of individuals is given by a level 1 variance, The formulation here 
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Table 3: Definitions of variables and summary statistics  used in the models of Table 4  
 
Variable Description and summary statistics 
Level 1: Pupil  
Gender  1, Male  (50.3%); 2,  Female (49.7%) 
Free school meals 1, Eligible for free school meals  (38.3%); 2, Not eligible (61.7%) 
Nursery 1, Previous nursery education (66.5%); 2, Others (33.5%) 
Centred Age Age in months centred on 86 months at KS1 testing  ( st. dev.=3.5) 
  
Ethnic-Language 
dummies 

Fourteen compound categories were formed from ten ethnic groups 
and twelve first languages. The base for dummies is White with all 
languages ( 59.0%). Only 0.3% of children were White with languages 
other than English  

EthLang2 1, Afro-Caribbean-English ( 7.1%);  0, Others 
EthLang3 1, Afro-Caribbean-not English ( 0.4%);  0, Others 
EthLang4 1, Other ethnic groups-English ( 5.1%);  0, Others 
EthLang5 1, Pakistani–not English ( 16.0%);  0, Others 
EthLang6 1. Indian-Hindi (0.1%), 0, Others 
EthLang7 1, Indian-Punjabi (5.8%), 0, Others 
EthLang8 1, Indian-other languages not English (1.0%); 0, Others 
EthLang9 1, Bangladeshi-not English (4.0%); 0, Others 
EthLang10 1, Arabic-not English (0.5%); 0, Others 
EthLang11 1, Chinese-not English (0.2%); 0, Others 
EthLang12 1, Vietnamese-not English (0.2%); 0, Others 
EthLang13 1, Mixed race-not English (0.5%); 0, Others 
EthLang14 1, Other ethnic groups -not English (0.2%); 0, Others 
  
Level 1: School  
baseline aggregate Average of seven percentages of children in school  at level 2 or 

above on each baseline assessment 
Free school meals 
context  

Percentage of children eligible for free school meals 

 
 
consider effects on  this complete set  of cumulative probabilities Individual 
variation is governed by these probabilities in a multinomial fashion. There is 
a possibility of extra multinomial variation but this will not be considered in 
detail here. (see \Fielding (2000)). In general, a set of cumulative probabilities 
for the ordered grades may be conceived as a scale for the ordered grade 
responses in that they are monotonically related to the set of grades: the 
increasing cumulative probabilities corresponding to increasing difficulty of 
achieving at least a certain grade level. It is the changing nature of this 
probability scale across individuals in response to fixed and random 
explanatory effects that we now wish to model.  
 
The set of cumulative probabilities are constrained to lie between zero and 
one. It is usually desired to allow effects to operate in a linear and additive 
fashion akin to standard multilevel linear models. A functional monotonic 
transformation of the probabilities ( ) ( )( )s s

ij ijL γ α=  to a scale occupying the whole 

of the real line on which effects can operate achieves this end. Technically, in  
general this transformation or link function can be specified by any inverse 
distribution function characterising a continuous random variable on the real 
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line. In particular the logit function which  is the inverse of a logistic distribution 
is often used : 
 

( ) ( ) ( ) ( )( ) log ( ) log( /(1 )s s s s
ij ij ij ijL itγ γ γ γ= = −  

 
We also use the probit link 1 ( )( )s

ijγ−Φ which is the inverse function of a normal 

distribution. Thus for any individual cumulative probability scale we now have 
a new linear scale along the interval ),( +∞−∞ . Conceptually a set of 
thresholds or cut-points on this scale for each individual are determined by the 
individual’s probabilities over the grades (Bock & Lieberman, 1970). Thus  

γ )( s

ij
  (s=1,2….6) under transformation correspond to  intervals on the linear 

scale 

  (1) (1) (2) (2) (3) (3) (4) (4) (5) (5)( , ], ( , ], ( , ],( , ], ( , ], ( , ),ij ij ij ij ij ij ij ij ij ijα α α α α α α α α α−∞ +∞  with )( s
ijα    

constituting the thresholds. Changing the cumulative distributions over the 
ordered grades through the operation of predictor variables on the 
transformed scale changes these thresholds. The nature of these changes in 
response to effects is what we wish to model and estimate 
 
Thus we  subject these transformed probabilities to a full range of  linear 
effect multilevel models through a linear predictor ( LP)  be some form of 
standard continuous variable response model including higher level random 
effects, but excluding any level 1 variance specifications. For multinomial 
variation there are  no separate estimable variance  parameter akin to the 
individual  disturbance in continuous variable multilevel models. Level 1 
variation is multinomial through the expected probabilities that we are 
modelling. This fact of inseparability of parametric specifications of 
expectations and variances is often a source of some confusion 
 
Goldstein (1995) discusses the formulation of these models in a multilevel 
context. We start with the most basic of logit link models. This two level 
ordinal level model for ordered grade probabilities is conceptually comparable 
to the base  variance component model we discussed in section 2. 
 
We have for s=1.2,3,4,5: 

( )
( )

( ) ( )
0( )

( )logit log
1

s

ij s s
ij js

ij

s uij

 
 = = = + − 
 

α α
γ

γ
γ

 

The parameters 
( )s
ijα correspond to the cut-points for the average cumulative 

distributions around which those of schools vary. A fit to this model estimates 
only the series of marginal cut-points with a single random location effect for 

the distribution for the thj  school; that is the cumulated probabilities do not 
depend on any individual level characteristics denoted by the subscript i or 
institutional ones other than a single random effect 0 ju . The latter is assumed 
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normal with zero mean and variance 
0

2
uσ . An individual’s response follows a 

multinomial distribution determined by the cumulative proportions ij
s( )γ ,  

We extend to include explanatory variables and as in section 2  and a logit 
development is   
 

( )
( )

( ) ( )
0( )

( )logit log ( )
1

s

ij s s
ij ij js

ij

s X uij α α β
γ

γ
γ

 
 = = = + + − 
 

. 

 
Differential school  regression coefficients can be modelled so that some of 
the coefficients can  be expressed as kj k kjuβ β= + . There will thus be many 

random residuals at the school level and these are assumed to have a 
multivariate normal distribution. This model possesses a useful property 
referred to as proportional odds. This can be seen by anti-logging to give the  
cumulative odds of  achieving at least a certain level: 
 

( )

( ) ( )
0( ) exp( ) exp{ }exp{( ) }

1

s

ij s s
ij ij js

ij

X uα α β
γ
γ

 
  = = + − 
 

     . Since the second  

 
term in the expression is invariant to s changes to it  in response to the effects 
change the set of  odds across s in a proportional fashion. No such simple 
interpretation is available for other link functions such as the probit. Thus In 
the logit,   since effects operate linearly on log–odds, some useful 
interpretations of parameter estimates are possible. For instance,  in  Table 4 
results for a logit model BL the estimated baseline number coefficient is  0.80.  
This is   the net effect on log-odds  of  a standard deviation unit change in 
number. Such a change will shift  the entire response distribution in such a 
way that the set of five log-odds are all shifted by  a constant 0.8. Alternatively 
the net effect is to multiply the set of odds proportionally by a factor 
exp(0.8)=2.23. Thus the  odds ratios for pairs of categories remain unaffected. 
School random effects are also additive on the set of  log-odds and operate 
proportionally in  similar ways, 
 
Another interesting and useful interpretation of these ordinal models is 
through the concept of a continuously varying though unobserved latent scale 
variable (lv) underlying the grading. It may be supposed to follow a continuous 
response multilevel model (lv)ij = ( )ij ijX eβ + . Note thee is no intercept since 

the location of this conceptual scale can be arbitrary  Unknown cut-points, sθ , 
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Table 4. Parameter estimates for two-level ordered category models for KS1 Reading Test 
Estimated standard errors are  in parentheses: An extra-multinomial parameter φ  has been 
fitted. 

Fixed  Model AL Model AP Model BL Model BP Model CL 
θ(1) -3.56 (0.11) -2.00 (0.06) -4.35 (0.14) -2.46 (0.08) -4.54 (0.12) 

θ(2) -1.34 (0.08) -0.82 (0.05) -1.68 (0.12) -1.00 (0.06) -2.22 (0.09) 

θ(3) -0.43 (0.08) -0.27 (0.05) -0.47 (0.11) -0.28 (0.06) -1.24 (0.09) 

θ(4)  0.32 (0.08) 0.19 (0.05)  0.54 (0.11)  0.30 (0.08) -0.44 (0.09) 

θ(5)  0.90 (0.08) 0.54 (0.05)  1.32 (0.11)  0.76 (0.06)  0.61 (0.09) 

Baseline assessment:      

Spelling    0.21 (0.04)  0.12  (0.03)  

Reading    0.35 (0.04)  0.20 (0.03)  

Writing    0.21 (0.04)  0.13 (0.03)  

Number    0.80 (0.04)  0.46 (0.03)  

Algebra    0.32 (0.04)  0.18 (0.03)  

Shape and Space    0.02 (0.04)  0.01 (0.03)  

Handling data    0.28 (0.04)  0.16 (0.03)  

      

Gender      -0.61 (0.05) 

Free School Meals     -0.71 (0.06) 

Nursery      0.23 (0.06) 

Centred Age      0.10 (0.07)  

      

EthLang2     -0.01 (0.12) 

EthLang3      0.14 (0.44) 

EthLang4      0.27 (0.13) 

EthLang5     -1.10 (0.11) 

EthLang6      0.51 (0.85) 

EthLang7     -0.44 (0.14) 

EthLang8     -0.06 (0.27) 

EthLang9     -1.28 (0.17) 

EthLang10     -1.09 ( 0.41) 

EthLang11      0.55 (0.62) 

EthLang12      2.02 (1.05) 

EthLang13     -0.34 (0.39) 

EthLang14      0.43 (0.65)  

      

      

Random effects       

School variance: 2ˆuσ  0.581 (0.086) 0.201 (0.031) 1.233 (0.177) 0.387 (0.058) 0.301 (0.052) 

School % of  residual 
variance in lv model 

15.0 16.3 27.2 27.9 8.4 

Approximate reduction 
in  level 1 logistic latent 
variance from model AL 

-- -- 72% -- 71% 

Approximate rescaled 
school variance using 
AL model logistic  CMS 
scale 

0.581 --- 0.880 -- 0.216 

Extra-multinomial      

φ̂  0.968 (0.010) 0.988 (0.009) 0.956 (0.009)  1.091 (0.008) 0.960 (0.009) 

      

-2 log-likelihood 7680.70 7168.52 -3045.7 1   
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Fixed  Model  DL Model EL 
θ(1) -4.90 ( 0.16) -4.96 ( 0.14) 

θ(2) -2.20 ( 0.13) -2.27 ( 0.11) 

θ(3) -0.97 ( 0.13) -1.03 ( 0.11) 

θ(4)   0.06 ( 0.13) -0.01 ( 0.10) 

θ(5)   0.85 ( 0.13)  0.79 ( 0.10) 

Baseline assessment:   

Spelling  0.21 ( 0.04)  0.20 ( 0.04) 

Reading  0.35 ( 0.04)  0.36 ( 0.04) 

Writing  0.15 ( 0.04)  0.17 ( 0.04) 

Number  0.80 ( 0.04)  0.79 ( 0.04) 

Algebra  0.30 ( 0.04)  0.30 ( 0.04) 

Shape and Space  0.02 ( 0.04)  0.04 ( 0.04) 

Handling data  0.28 ( 0.04)  0.29 ( 0.04) 

   

Gender  -0.46 ( 0.06) -0.45 ( 0.06) 

Free School Meals -0.41 ( 0.06) -0.39 ( 0.06) 

Nursery -0.08 ( 0.07) -0.08 ( 0.07) 

Centred Age  0.01 ( 0.01)   0.01 ( 0.01) 

   

EthLang2 -0.09 ( 0.12) -0.10 ( 0.12) 

EthLang3  0.15 ( 0.49)  0.21 ( 0.48)    

EthLang4  0.22 ( 0.13)  0.21 ( 0.13)  

EthLang5 -0.25 ( 0.13) -0.28 ( 0.12) 

EthLang6  1.12 ( 0.87)   1.15 ( 0.86) 

EthLang7  0.07 ( 0.15)  0.04 ( 0.14) 

EthLang8 -0.08 ( 0.29) -0.12 ( 0.29)  

EthLang9 -0.29 ( 0.19) -0.29 ( 0.18) 

EthLang10 -0.26 ( 0.42) -0.32 ( 0.41) 

EthLang11  1.09 ( 0.67)   1.11 ( 0.68) 

EthLang12  2.78 ( 1.04)  2.69 ( 1.04) 

EthLang13  0.24 ( 0.40)  0.22 ( 0.40) 

EthLang14  0.04 ( 0.68)  0.02 ( 0.69) 

   

School contexts:   

  Baseline aggregate  0.83 ( 0.09) 

  Free school meals context  0.38 ( 0.06) 

   

Random   

School variance: 2ˆuσ  1.112 (0.161) 0.522 (0.08) 

School % of  residual 
variance in lv model 

25.2 13.7 

Approximate reduction in  
level 1 logistic latent 
variance from model AL 

69% 68% 

Approximate rescaled 
school variance using AL 
model logistic CMS  scale 

0.764 0.355 

Extra-multinomial   

φ̂  0.952 (0.012) 0.943 (0.009) 

   

-2 log-likelihood -4070.51 -4504.31 
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on this variable may further be supposed to form the set of  ordered  
categories. Category 1  is observed if 1lv θ−∞ < < . Category 2 corresponds to 

1 2lvθ θ< <  and so on to where category 6 is 5 .lvθ < < ∞  The logit model above 
ensues if it is assumed that the distribution of the level 1 disturbance eij is a 
standard logistic distribution. An ordinal probit model follows if eij ~ N(0,1).  
Full details of why this is so are given in  the Appendix of Fielding & Yang 
(1999). Note the models fix the level 1 variance in standard units. By definition 
a latent variable is only conceptual and  unobserved and has no  
measurement unit. The latter may be arbitrary up to constant multiplication but 
then with differently scaled effects. However, the ordinal model based on 
observed categories cannot distinguish between these arbitrary choices. 
Fixing the arbitrary  measurement multiplier by fixing the variance of 
conditional level 1 disturbances in the latent model is a way of  resolving the 
issue. With a free parameter  the ordinal  model would not  be unidentifiable. 
Since the variance is being fixed it may as well be determined by standard 
distributions. It may be noted that by using a lv we are not arbitrarily deciding 
on a scale for which to build a linear model, which has been objected to. We 
are merely postulating the existence of  some scale on which a linear model 
operates. 
 
Model  estimation 
 
A variety of estimation procedures for specific situations  have been 
suggested in the literature. The widely available and very flexible MlwiN 
software (Rasbash et. al.,1999).This is  built around  iterative generalised 
least  squares procedures  (Goldstein, 1995). The extensive  macro facilities 
offer flexibility in adapting to a wide variety of complex models including the 
current ones. A suite of specially written  macros, MULTICAT distributed with 
the package is  under continuous development. The worksheet and model set 
up must be handled using the MlwiN command language in ways described in 
the macro  manuals (Yang et. al., 1998) 
.    
Application to the example  
 
Firstly, the estimated  base  Models AL (logit)  and AP (probit) in Table 4 have 
no controls and establish a framework. The models are 

( ) ( )( /(1 ))s s
ij ij s jn uγ γ θ− = +l  and 1 ( )( )s

ij s juγ θ−Ω = +  respectively. School random 

variation operates on sets of  probabilities through uj according to the 
operative model. Conditional on being in a  particular school, response 
variation for  students is determined by converting these to probabilities. 
Modelling strategies are then usually directed towards attempted explanations 
of overall response  variation from both sources that are evident in such base 
models. This will be directed towards analytical aims. It may be stressed 
again that individual and school variation now operates differently. In linear 
models  sources of variation are additive , with varying uj shifting conditional 
expectations and  Level 1 variance  separately specified.. This may be true of 
an underlying latent  model. However, once this is cast in ordered category 
form  a set of expectations in the form of  probabilities fully express response 
variation. Expectations and variability are bound up with each other. Thinking 
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‘linearly’ means sometimes mistaken impressions are formed of results and 
wariness must be exercised.. 

For similar reasons, there should be care when the fixed parts of models are 
assumed to be marginal population expectations as if models were linear. In 
the logit base model AL , marginal log-odds are indeed ( )sθ  since E(uj)=0.   

However, non-linearity means ( )( )s
j ijE γ  is not 

( ) ( )

/(1 )
s s

e eθ θ+ . In turn the 

expected value of 
( ) ( )ˆ ˆ

/(1 )
s s

e eθ θ+ cannot be evaluated by simply substituting ,the 

expectations of the β̂l . However, for many practical purposes these may be 

used as reasonable  approximations. With this proviso, the estimates ( )ˆ sθ  for 
models AL and AP can be inverted in this way and cumulative distributions 
converted to category probabilities. The distributions  are given in rows 5-8 of 
Table 3 below the empirical one. Without  schools random effect both  models 
would be a simple re-parameterisation of probabilities. Both models give 
similar results and close to the empirical. There is a minor difference in the 
small lowest category. This reflects the model sensitivity to small categories in 
tails. If binary responses, with grade zero the focus,  had been of interest , 
then it is likely there might be more concern about model choice. The effect of 
different  lv scaling can be seen in the table 4 results. This would affect any 
model  comparison. The results for the cut points, ( )ˆ sθ , may look entirely 
different on the surface. Apart from small effects of distributional differences , 
a factor of   / 3π  brings them broadly into line. The latter is the standard 
deviation of the standard logistic distribution implied by the logit model.  From 
implicit level 1 standard variances, the % of residual variance due to schools 
can be calculated. As table 4 shows the  school  contribution  to overall 
response heterogeneity is estimated  much the  same (15-16%) for both base 
models.  
 
Explanatory models are now developed. Models BL and BP  consider 
introducing the baseline reception assessments into logit and probit models 
respectively. On comparing, by similar calculations to those above,  it would 
be seen that these  give similar impressions. Thus for other specifications logit 
models only are  illustrated in Table 4.  Logit model  CL examines a range of 
individual background factors without prior ability controls. Model DL 
combines the two sets and Model EL  has  some school context variables 
found  relevant and interesting.. It must not be supposed that these models 
emerged without detailed investigation. In general statistical model evaluation 
and selection strategies can be quite varied. They often involve changes in 
likelihoods (λ) or deviances based on –2logλ. For these models likelihood 
values estimated from procedures in MlwiN  are  based  on approximate 
linearisation  and can be sometimes a little unreliable for formal use. 
Heuristically they can, however, give an indication of the extent of 
improvement of the explanatory power of models. They have been quoted for 
illustrative purposes in Table 4. For formal evaluation, however, alternatives 
are available  in the form of the MlwiN  FTEST or RTEST. These use  Wald 
type  test statistics for  single or joint  contrasts of fixed  or random 
parameters using the estimated variances and covariances of the estimated 
parameters. The statistics  have approximately a χ2 distribution with degrees 
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of freedom  appropriate to the relevant contrast null hypothesis. If desired, 
confidence intervals for parameters, either singly or jointly, can also be  
constructed. To  illustrate their uses consider comparing model BL with AL. 
The -2logλ change of 512 indicates that the baseline assessments are 
instrumental in explaining response variation. Formally a Wald statistic can 
examine the baseline coefficients simultaneously. There are seven contrasts, 
each simply involving  the  single baseline parameters which are 
hypothesised  zero. The joint FTEST  yields a value of 1649.6 on 7df , which 
naturally  is highly significant. The modelling  can also handle random 
variation across schools in the explanatory variable coefficients ( ‘differential 
effectiveness).  For instance If  a random baseline spelling coefficient was so 
added to BL the estimated variance was substantively small. A  RTEST 
yielded  3.6 on 1 df. This is not significant even at a 5% level. Other potential 
random variation of various coefficients in all the illustrated models yielded 
similar results. For these reasons, random variation at the school level is 
simply represented by a single intercept variation  in the illustrated results 
 
Such  procedures have proved useful in model development, but this author 
cautions against over excessive reliance on formal classical point hypothesis 
testing in framing published results. Sizes of effects are  often of more interest 
than whether they are significantly different from zero. They may also be of 
interest  even if they are  small relative to their  precision. Parameter values 
other than zero may be plausible and may be included in models and reported  
on substantive grounds ( with confidence intervals if there is specific interest). 
Again, and for other reasons it is sometimes important to avoid the publication 
bias in reporting  only statistically significant results. Certain negative findings 
can sometimes be important.  For instance, for  these  and other  reasons, all 
baseline tests have   been  included in the fitted models. Other insignificant 
coefficients or those with small effects have also been included. These 
highlight a number of useful interpretations. For example, the results can 
illuminate properly  the relative importance of various baseline tests on the 
response net of all others. Again, as another example, the inclusion of the 
insignificant  nursery variable in the final models DL and EL demonstrates that 
its obvious influence on performance is not net of prior ability. It  explains 
performance but is  a small influence on progress. .   
 
A combination of formal procedures and attention to such substantive 
considerations has informed the process of model fitting. Although limitations 
of their use have been discussed, it may be noted  that  points-scoring models 
have a useful role to play in model exploration. They have been used in this 
way. They are much quicker to implement and initially will usually identify the 
source of major effects, as exemplified by the discussion part of the paper by 
Ezzett and Whitehead (1991). Sometimes, of course, according to research 
direction such identification may seem to be sufficient.  For more detailed 
analytical objectives, effects specified and adequately parameterised in 
subsequent generalised. models might be preferred.  From exploration to 
refinement it  has been also been importantly  noted that the refined category  
models often result in simpler patterns of effects. This may be tentatively 
suggested as another of their advantages. For instance some quadratic terms 
in baseline measures appeared important in scoring models, possibly as a 
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reflection of ceiling and floor effects. After investigation they proved  not 
necessary in refining the illustrated models. Similar conclusions arose in 
evaluating potential interactions that had emerged as plausible in the initial 
exploration. Again points scoring models suggested  random variation across 
schools for some baseline and other coefficient. Simple school variation 
proved sufficient for ordered category models. 
 
Some comments may now be made about the interpretation of the results. 
After illustrations of just  two of the many  possible analytical uses will be 
made; individual predictions of ‘chances’ and evaluation of school’s ‘value 
added’. 
 
Some researchers prefer interpretations directly in terms of ordered category 
probabilities and others focus on their meaning in terms of  the lv. The 
preference is subjective since there is consistency, but tastes vary across 
disciplines. With  the first focus, the fixed effects can be directly interpreted as 
linear contributions on the link scale of transformed probabilities. Since the 
baseline variables are standardised, the most important of them is number. 
The  coefficient of  0.80  in BL  is an estimate of the net marginal  change in 
all of the set of  five  log-odds  per standard deviation unit change in the 
number variable. On the lv interpretation it also represents a marginal effect  
of O.80 on the standard latent response variable, scaled  for that particular 
model.  A change to a more substantively meaningful marks scale is always 
possible by linear transformation. The recognition of re-scaling on this 
interpretation may , however, be seen to be crucial. Marginal effects on 
probabilities cannot be so simply represented. Due to the non-linearity, the 
partial derivative of ( )s

ijγ  by, say,  baseline number depends on all the other 

effects in a model and on s. Sometimes for summary purposes average 
distributions and  average marginal effects may calculated by setting other 
variables and random effects at their mean values. The latter are all zero for 
model BL. The summary may be seen as only representative. For model BL 
rows 9-10 of Table 3 gives estimated average percentage distributions at 
these zero  mean values. Here these are formed simply from antilogits of 
model BL estimates  ( )ˆ sθ . Partial differentiation of each ( )s

ijγ  with  respect to 

baseline number, for example, and evaluation at the means of variables and 
effects may be performed straightforwardly. The results are estimates of the  
marginal effects of a standard  deviation increase in number at the means of 
all variables, including number itself. They form one sort of  suitable average 
summary. If necessary marginal effects can be estimated at a number of other 
points  By differencing they may be converted into the  marginal  effects of 
number  on category probabilities. At the means these are -0.010, -0.095, -
0.083, 0.003, 0.053, and 0.133 for the six categories sequentially. They sum 
to zero as they should since  the sum of probabilities is constrained .They 
show the  obvious effect that increasing number level has on shifting  the 
underlying response variable upwards. School random effects uj are also 
additive on link scale. For a logit model  their variance is  variability in log-
odds across schools. However, it  may be  usefully interpreted in relation  to 
the  scaled   lv  variance at level 1. Percentages of residual variance due to 
schools are thus given in Table 4. The similar estimates of  27.2 % and 27.9% 
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are given for BL and BP, and may be usefully contrasted with the  15.0%  and 
16.3% for  base models AL and AP. After baseline control it seems there is 
relatively more of the residual variation that can be attributed to schools. It 
could be asserted that progress differences in schools relative to individual 
progress heterogeneity are  sharper than those for raw performance at KS1. . 
. 
With these ideas fixed , it is of obvious interest to interpret changes in  
different  models as more effects are introduced. We expect that factors 
identified as influences  on the response may  ‘explain’ variation  in that 
response at one or  both levels of the hierarchy. Teasing out the nature of this 
is slightly more complex than for linear multilevel models. The main reason for 
is, of course, that  the level 1 variation is characterised in terms of differently 
specified probabilities without a separate variance parameter. 
Correspondingly, and for much the same reason even under a lv 
interpretation,  model changes involve changes in scale of residual variances. 
For instance, the introduction of certain  explanatory factors may reduce 
heterogeneity at level 1. One manifestation of this may be seen by noting the 
heavier concentration in the middle categories in row 10 of Table 3 (model 
BL) compared to row 6 (model AL). However, although a reduction in KS1  
level 1  residual variation is evident the implicit lv is rescaled to be standard 
logistic. This also impacts on school 2ˆuσ . Changes in this across logit models  
in Table 5  may be directly  interpreted  as changes in school variability in  
log-odds. It may be sufficient to note them without further qualification. 
However,  they are a  combination of changes  of scale and changes in 
residual school response heterogeneity. If , as often, the latter is of interest 
some additional work is required.  
 
Changes in the ( )ˆ sθ  are instructive in this and other  work in interpreting 
results changes across models. However, in this connection it is useful to 
view the ( )ˆ sθ  from their two perspectives  On the first perspective,  they 

account for the differences in link transformed ( )s
ijγ  across categories, 

independently  of the  values of the xij and ui in a model. The latter shift the 
entire conditional level 1 ordered category response distributions and hence 

( )s
ijγ in model specified ways. Influential explanatory variables may operate at 

both levels after their introduction but do so in different ways.  Direct 
influences on level 2 variability will operate through the LP to  change the 
dispersion in the location of the conditional distributions, much as in linear 
modelling.. In the logit model, if these were the only influences there would be 
a reduction in  variation between sets of  odds across schools, without 
necessarily  affecting the  proportionality factors within those sets; the relative 
sizes of  ( )ˆ sθ may not change. In contrast level 1 influences will  result in less  
within school variability in the ordered response and hence a conditional level 
1  distribution will have smaller dispersion.  This will not be  explicit in 
comparative model results. However, the ( )ˆ sθ  estimates characterise the 
spread of the conditional distributions over different response categories. If 
there is changed dispersion  ( )ˆ sθ  will change relative to each other. Thus in 
the logit,  proportionality amongst odds will change. Additionally as noted 
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above there will be effects on the school variance estimate 2ˆuσ   additional to 
changed school heterogeneity. This is a consequence of the additivity of  
school effects on the link scale that is changed consequent on the other 
changes. That there is a scale change is best  seen if  the ( )ˆ sθ  are viewed 
from the second perspective  as rescaled  cut-points on the underlying lv. In 
either situation the examples do not consider allowing random school  
variation in specific ( )ˆ sθ . Sometimes this is very useful but creates  additional 
interpretive points in studying changes that will not be pursued..    
 
A contrast of model AL and BL  on introduction of baseline controls, might 
clarify these two perspectives and help to interpret changes in model 
estimates, including 2ˆuσ . First the stretching in the  ( )ˆ sθ  parameters may be 

noted. However, it is only changes in ( )ˆ sθ  relative to each other  that have 
non-trivial relevance. For any model  they are log-odds at  zero realisations of 
variables and random effects, and hence where the mean of the underlying lv 
is also zero. For models AL and BL they are also realisations at the mean, 
which is convenient since they are then directly comparable. A stretching of  
log-odds is indicated straightforwardly from the comparative ( )ˆ sθ  estimates. 
However, for non-zero means of included variables the reference lv will not 
have mean zero at these means of  variables  There is an intercept shift which 
will move all  the ( )ˆ sθ  , log odds at  zero values, up or down by the same 
amount in addition  to changes in their relative size to accommodate changing 
proportionality. A glance at the ( )ˆ sθ  for models  CL and DL where explanatory 
variable means are not zero should make this apparent. Comparable values 
of log-odds at the mean of variables would require a fairly simple intercept 

adjustment 
1

ˆ
L

l lxβ
=

∑
l

.  However, irrespective of this, since it is the relative 

changes that are of interest one way to view them is to first  take ratios of  the 

corresponding  proportionality factors 
( )s

eθ  To examine the  relative changes  

they can first  be converted to.
( )s

eθ to which odds are proportional: These are 
(0.028, 0.261, 0.650, 1.377, 2.450), (0.013, 0.184, 0.625, 1.716, 3.74) and  for  
AL and CL respectively. Taking ratios for BL to AL  gives as  percentages (46, 
70, 96, 124, 152). This is a useful summary of one impact of baseline 

controls. Since more generally the 
( )s

eθ express only the proportionality of 
odds, it is these ratios relative to each other that is important. It  is  convenient 
then  for such comparisons to scale the ratios to make say one 100%. The 
reductions or increases in the proportional odds can then be seen relative to 
this one. This  also accommodates the problem of any  shifting of the 
intercept.  From the above the index set (48, 73, 100, 129,158)  is one such 
summary  through which the relative changes in ( )ˆ sθ  can be viewed. Either 
summary shows the reduced level 1 conditional  response  dispersion,  as 
evidenced, for example, by evaluation of probabilities at the mean in Table 3. 
The odds are cumulative. Thus, wherever the conditional location is, a greater 
concentration  of the response distribution will be evidenced by such patterns 
in the indices. It is possible, in terms of the odds perspective, to give more 



 

 

29 

29

detail about the extent of changes in variation at both levels. However, 
possibly the lv perspective of changes in ( )ˆ sθ  are more illuminating. The  
baseline controls reduce variation in response at level 1 but in moving to 
model BL the   conceptual lv is re-standardised to the extent of this reduction. 
This will be accompanied by an inflation of the cut points to accommodate the 
new scale. Such scale comparisons are also best made conditionally  at 
where the lv has mean zero. For  models CL.DL, and EL for instance, some 
variables are not centred at means and a simple intercept adjustment is 
required to  the ( )ˆ sθ  before comparisons are made. The model estimation  
does not operate directly  on  the unobserved continuous lv scale and the fit is 
obviously to ordered categories only. Also the fits are only attempts at good 
approximations by theoretical models to complex reality in the data. For these 
reasons in it is not expected that estimates will inflate or deflate  the cut-points 
by exactly the same factor. Contrasting model BL with model AL , where cut-
points both reflect a lv mean of zero, this factor ranges only from 1.1 to 1.42. 
On taking reciprocals and squaring, scale factors of these orders in a 
theoretical model would imply  underlying level 1  variance  reductions to  
between 50% and 82% of its former value. Given the data, this is a rough idea 
only. However, whatever is the appropriate figure, rescaling affect estimates 
of other parameters that the two models have in common in addition to other 
consequences of the model change. Here the only common effect parameter 
estimate  is 2ˆuσ .  If the level 1 theoretical  variance changed  to  x% of that 

before, then the scale of 2ˆuσ  changes accordingly. Thus before concluding 

that changes in 2ˆuσ  were a reflection of changes in  school heterogeneity, 
restoration of scale by  a x% multiplication is in order. To give empirical 
content to this a rough and ready method for getting some approximate 
handle on x  has been devised. Full details of this method are discussed in 
Fielding and Yang (1999). The fitted grouped distribution for  base AL in row 6 
of Table 3   can be used to construct  logistic CMS. For these common scale 
scores, the variances are calculated for the AL  distributions and that of  BL in 
row 10.  A comparison  shows a level 1 variance reduction in  BL to 72% of 
that of AL.  Scaling the Level 2  variance of BL  gives  0.88. Variance in the 
underlying response at  school level is viewed as increasing but by perhaps 
not as much as might seem from model results. This is not uncommon in 
primary schools where progress may be more variable across schools than 
the KS1 outcome itself, and becomes apparent after baseline control . It must 
be stressed that these figures will be rough and they must not be given  an air 
of spurious precision. This type of scaling  relative to AL is also applied to 
other models and displayed as additional approximate  information in  Table 5 
 
There is much of interest of real substantive content in the models presented. 
The main aim has been to use the example to illustrate model interpretation. 
However, a  few comments will be made about some of this content without 
excessive elaboration on the educational issues. Reasons have already  been 
given for displaying some coefficient estimates that are not significant 
statistically. Baseline assessments and individual background variables are 
quite  closely associated.  Model CL controls for the latter separately. Many 
ethnic-language dummy  comparisons with white English speakers are 
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estimated imprecisely due to small numbers. However, there is some 
evidence that fairly large groups of   Pakistani and Bangladeshi pupils whose 
first language is not English are disadvantaged. Other effects are as expected 
and there is a gender gap in favour of girls. A month difference in age 
increases the proportional odds by a factor of 1.1. This corresponds to 0.06 
standard deviation units on the lv scale. It can be noted that the factors 
reduce  between school variation,  in contrast to baseline controls, which 
increase it. Further this reduction is relatively larger than within school. The 
latter reduction is similar to that exercised by baseline. Thus although the sets 
of factors are related for individuals they operate quite differently at the school 
level and are certainly not  proxy in this respect. The reason is possibly that 
the catchment characteristics of school  make them more homogeneous in 
intake than on ability factors. The importance of recognising the multilevel 
structure is again emphasised. In model DL  where the effects are combined 
the coefficients of the baseline variables remain much the same as BL. This is 
a real similarity since the approximations show  scaling in the two models is 
not too different. Thus  their impact on  KS1 reading is largely independent of 
additional controls with which they may be related. Of course with  prior ability 
controls other effects are net of this and may be interpreted as influences on 
progress. An FTEST of the extra effects in  DL over BL yields a  highly 
significant chi-square of 148.4 on 17df. Girls progress more and it is 
interesting that this is an  opposite effect to that in KS1 Mathematics (Fielding, 
1999).  Domestic circumstances captured by the free school meals dummy  is 
related to progress net of ability. However, there seem to be no net advantage 
on progress of having a nursery education or being older.  Mainly due to 
imprecision,  the majority of  ethnic-language effects are not statistically 
discernible for this data. so not much can be concluded. However the 
disadvantage of  certain ethnic groups in attainment levels  does not seem to 
carry over for progress. The fairly large net positive  effect of the Vietnamese 
dummy relates to a very small group of 15 pupils. The importance of context 
effects is demonstrated in Model EL results. Irrespective of individual 
influences pupils seem to make more progress when their peer group in the 
school is more advantaged. These factors explain a substantial amount of 
school variation even after a wide variety of pupil  controls have been 
imposed. The approximate figures show that  school variance is reduced to 
the order of a half of model DL. This order is confirmed by the reduction of the 
portion of residual heterogeneity attributable to school from 25% to 14%. A 
general conclusion of these results is that the separate contributions of prior 
ability and other characteristics to progress. They also operated differently on 
school variation and a multilevel level analysis  brings this out. These facts 
have often been ignored in policy related research. As mentioned before the 
DfEE, for instance suggest using only aggregate free school meals to target 
schools for literacy interventions. 
 
Two particular analytical uses of the results will now be outlined. The first is 
concerned with individual prediction. The Value Added National Project ( Fitz-
Gibbon, 1996) stresses that  presentation of ‘chances’  of achieving certain 
levels for students with different profiles is a very meaningful way of 
communicating predictions. Such an exercise is difficult when traditional 
points scores models are used. Ordered category models provide a basis for 
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predicting the entire probability distribution over categories and serves this 
purpose well. There may be debate about which explanatory variables to use. 
For illustration, Table 5 below presents ‘chances’ based on  Model BL. They  
 

Six Baselines at Level 1 with 
Number  at Level 

Six Baselines at Level 2 
with  Number at Level 

KS1 
Reading 
Level 

Empirical 
Overall 
Percent 0 1 2 0 1 2 

0   3.6   8.5  3.2  1.1  1.1  0.4  0.1 
1 19.6 38.9 25.6 12.3 12.6  5.0  1.8 
2C 17.7 21.2 21.2 17.8 18.0 10.1  4.3 
2B 16.6 15.4 17.6 17.6 17.6 15.2  8.6 
2A 12.0  7.7 12.6 13.6 13.6 13.7 11.1 
3 30.5  8.3 19.8 37.4 36.9 55.5 74.1 
 
Table 5: ‘Chances’ distributions:  Predicted percentage distributions over KS1 
Reading Levels for some  combinations of baseline assessment levels 
 
might be used when only prior ability measures are available. Adjustments for 
expectations of non-linear functions suggested by Hedeker and Gibbons 
(1994) and Goldstein (1995, p79) are made before converting  the fitted  LP 
for covariate values  to  predictions of probabilities. The baseline values have 
four discrete values but experimentation has concluded that treating them  
linearly in  the LP is fine. The top level is very rare with no more than 2.2% in 
the data for any test. Thus the examples set all the baseline variables except 
number at either level 1 or 2. The important influence of number can be seen 
by allowing it to vary in the table. Such distributions, perhaps with more 
detailed profiles, when converted to graphical displays by histograms provide  
a readily understood motivational device. However they are based on point  
estimates of model parameters. For any detailed inferences, the uncertainty of 
estimates should be recognised and confidence bands for the distributions 
could  be provided. It should also be recognised that a  school effect that 
could be included in the profile  may alter these overall estimates. These fitted 
‘chances’ are averaged over schools. In fact  a pupil may be expected to do 
better or worse than a similar pupil does if their school effects were different.  
 
The MlwiN procedures in MULTICAT  also allow the estimation of the  
residual iu  and the standard errors of these estimates for a model. 
Generalised residuals at level 1 are a more complex matter due to the 
discreteness of the response and will not be pursued here (see Chesher and 
Irish, 1987; Fielding, 1999). A use to which estimates of school effects  
ˆiu have been put is in deriving ‘value added’ measures for  schools. Since 

they result from models in which intake has been controlled there is a 
preference for the term ‘adjusted school effects’. The details of the controls to 
be used and the mechanism by which they operate are an area of vigorous 
debate in the school effectiveness literature. A model for outcome responses 
is often likened to an economics production function (Woodhouse and Yang, 
2000) The role of a school effect is seen as adding to the raw material 
characterised by other variables in the model, The model adjusts by 
controlling for this input quality. Official sources  often eschew the use of 
control using socio-economic characteristics which given the above results 
may  surely be contentious. However, for illustration  Figure 2 shows the  
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Figure 2:  School estimated residual effects for Model BL in rank order; Bands 
are residual +/- 1.4 estimated standard errrors 
 
 

 
 
estimated school effects (residuals) for model BL using only initial ability as 
controls. Uncertainty must be recognised in these estimates (Goldstein and 
Spiegelhalter, 1996). Thus as suggested by Goldstein and Healy (1995) they 
are surrounded by  the  1.4 standard errors giving overall 95% confidence 
intervals for sets of such comparisons. These caterpillar diagrams have 
become very familiar in school research but have as yet to make inroads into 
official publication. They can be routinely implemented in the graphics 
windows of MlwiN. The scale is that  of a logistic variable and could be 
converted to standard deviation units of outcome on division by / 3π . 
Schools and others are used to standardised scores so fairly easy 
interpretation of such diagrams should be possible. Scales can also be 
converted to level units if required. The overlap between school bands, as 
also noted in many other published contexts, means that it is difficult to 
discriminate between the effectiveness of the majority of schools. For 
screening purposes there are some obvious extreme schools at either end. 
These arouse interest and could be subject to further scrutiny. A few of the 
schools at the top end, for instance, are particular advantaged in the context 
effects and socio-economic variables. These have not been controlled in the 
graphed results. The diagnosis and analysis of outliers is aided by the 
methodological developments of Langford and Lewis (1998) , which are now 
implemented in the graphical interface of MlwiN. 
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4 Cross-classified and weighted random effects multilevel models 
 
In studies of cost-effectiveness of GCE Advanced Level provision we have 
become aware that costs and effectiveness variations within institutions are 
sometimes for more relevance than institutional differences ( Belfield, Fielding 
& Thomas (1996)). It is with the data collected during these studies that 
concerns us in this section. As mentioned in the introduction  there  has also  
been a switching away in much educational effectiveness literature from interest 
in effective schools to effective classrooms. Hill and Rowe (1996, 1998) discuss 
the assertion made by Monk ( 1992) that ' …how much a student learns 
depends on the identity of the classroom  to which a  student is assigned ' and 
develop the motivation for this switch of focus. Young (1998) discusses similar 
views and illustrates with the work of Fraser & Tobin (1989) who stress the 
importance of the 'classroom learning environment'.  We have already referred 
to the concern pf  Coe and Fitz-gibbbon (1998)  who make the comment, ''thus 
school ' effects' are sought despite the fact that learning takes place primarily in 
classrooms and may therefore be expected to be influenced more by classroom 
factors''.  Effectiveness and scope for improvement may this have discrete 
classes as a proper area of concern but similar views may be echoed when we 
examine the resource side. In our studies of post compulsory education  A  level 
provision we have found wide disparities between resource provision between 
our equivalent of classrooms, subject teaching groups (Fielding et al (1998)).  
The interactions between effectiveness and resource constraints are thus a 
difficult area of direct concern. Here we will be concerned with one side of this 
problem,  analysis  of A level outcomes, suitably adjusted, at the teaching group 
level. The complexities of the structure of A level provision, and indeed the data 
we have,  mean this may not be straightforwardly sought through traditional 
residuals from fitting well formulated standard hierarchical multilevel models. We 
will mention  this structure, associated data, and the methodological problems it 
poses in achieving this end. We hope that some of the  methods we propose 
and contrast will have wider  relevance since similar structures are quite 
common. We first briefly discuss, generically, the problems connected to 
disentangling effects, and the levels and sources by which they may operate. 
These are instrumental in developing models for explanation. Although the 
concern is with educational achievement these issues are of general relevance. 
 
In available literature as has been suggested  educational effects operating 
below the level of the institution are emerging  as more influential than 
variation between institutions. In studies of this phenomenon these 
conclusions are usually reached on the basis of apportionment of residual 
variation from (sometimes with fairly complex fitted factors) multilevel models. 
The evidence  has not always pointed inexorably to the conclusions. 
However, where it does not rational explanations may be found. Luyten and 
de  Jong (1998) conclude , for instance , that in  secondary  school studies  
that portray institutional effects as more important, prior achievement is not 
adequately controlled.  The latter article also contains the most recent review 
of the many studies of this phenomenon. The general consensus that within 
institution effects are the more important remains fairly well substantiated. 
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This has addressed the problem of disentangling levels of effect and usually 
through multilevel modelling of nicely structured hierarchies. 
 
However, the conclusions also beg the question of what is going on beneath the 
institutional level. This problem of disentangling what is happening is clearly put 
by Coe and Fitz-Gibbon (1998) who say, 'The combination of subject taught, 
teacher and pupil group is, of course, unique for each class, and effects could 
be attributed to all three parts of this tripartite confound'. One might even go 
further. Sometimes unmeasurable factors concerned with the classroom 
environment may operate and, of course, relevant for our broader purposes is 
the impact of resources.  Differences in performance, suitably adjusted, in 
different subjects at Advanced level is well documented (e.g. Fitz-Gibbon 
(1996)) and is pertinent for data such as ours, where a characteristic of the 
teaching groups is the subject itself. We will also suggest ways in which we 
might address the problem of disentangling teacher effects. The way in which 
teachers and classes have sometimes been treated synonymously is not 
entirely unequivocal. This has received attention by Luyten and de Jong (1998) 
who use a quasi -experimental design involving 'parallel classes' as their 
solution. Also the fact that pupils or students being units within classes and 
treated hierarchically, does not always yield satisfactory analytical approaches. 
The pupil group is unique for each class but it is often argued that satisfactory 
control cannot always be exercised by taken cognisance of all relevant pupil 
characteristics. Yet as students cannot be treated as randomly allocated to 
teaching groups (classes) there may yet be important but unmeasured sources 
of student variation which are associated with selection into teaching groups. 
Any differences between groups may be partly reflecting these.  A within group 
random student disturbance caters for unmeasured variation but may not 
adequately cater for these systematic effects which may be confounded with 
those of groups. The disentangling of many of these possible confounding 
factors is an important set of problems, which, in a particular context we try to go 
some way towards addressing here.. 
 
We firstly discuss some examples of  data structures that motivate the modelling 
structures we propose. We will see that introducing complex cross-classified 
effects into multilevel models is a way forward. We will  note how  the  
complexities  reflects that of the process it was gathered in.  We will then 
elaborate in a more technical way how  some of the general  methodological  
issues raised above are specifically pertinent.  In example  we  deal with some 
proposed solutions that arise out of the process of A level provision and the data 
we have. We apply some of these and in our results also contrast with results 
that might have ignored the problems. Our approach is a methodological one 
but we hope not to lose sight of the substantive import of our example  in the 
study of effects in A level provision. We also hope and are optimistic that there 
will be broader relevance to many other areas, both in school effectiveness and 
outside it. An important lesson to be learned, perhaps, is that attention to data 
needs be given if some disentanglement of effects  is to occur 
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Example structures and data 
 
The ideas now to be discussed are motivated by the recognition that in certain 
hierarchical  social structures there can be groupings of units at various 
levels. These groupings may themselves each form a level in a hierarchy but 
one that cuts across an existing level.  Each grouping may contribute effects  
to random variation that must be disentangled. A first  useful example is 
provided in the MlwiN manual ( Rasbash et.al. (1999) dealing with  attainment 
of children at age 16 in secondary schools. It is recognised that both these 
schools and the primary schools that the children previously attended can  
have effects. Children can be nested within both sets of schools but  children 
within a particularly secondary school belong to many primary schools and 
vice-versa. This is a two-way cross-classified structure at level 2. More 
generally there may be multi-ways of classification and cross-classifications at 
many levels. Here, neighbourhood in which the child lives may be a factor 
making a 3-way cross at level 2. The complexity of ways and levels in which 
such structures can appear, and many examples,  are discussed in Goldstein 
(1995). Good detailed applications for continuous responses and linear 
models are Goldstein and Sammons (1997) and Raudenbush (1993) and for 
binary responses Yang, Goldstein and Heath (2000). The data analysed by 
Rasbash et al (1999 are on 3,435 children attending 19 secondary schools 
coming from 148 primary schools in Fife, Scotland. The attainment response 
is graded into ten-point categories. This analysis used the points scores (1-
10)  and  continuous response normal linear models. Comparative analyses of 
the same data using the ordinal models developed here are given in Fielding 
(2000). The second example we discuss here uses a subset of data drawn 
from that collected in a study of  teaching group cost- effectiveness of A level 
provision in further education colleges in England (Belfield et. al., 1996). A 
similar dataset using linear points scores models has been discussed in 
Fielding (1998). The lowest level unit of analysis of the six-point  graded 
outcome is an entry to a subject examination. The set used has 3683 entries 
nested within 314 teaching groups ( classes), which in turn are  nested within 
6 colleges. On the surface this is a normal 3-level structure, although due to 
their small number colleges have been treated as a fixed effect blocking factor 
in later analyses. However, up to five entries are made by each of 1511  
students and there is a crossing of student and  group at level 2. Ignoring this 
crossing may result in teaching group differences being confounded with 
students and disentangling class such confounding  effects is the concern 
raised above. Modelling of unbalanced cross-classified designs is a sound 
methodological development in this direction. 
 
The natures of the crossing in the  two examples provide  contrasting  types 
both in balance and sparseness. Both are quite unbalanced but in different 
ways. In the first the data is near hierarchical in the sense that  each 
secondary school draws large numbers of  students from a limited number of 
different sets of primary schools. A majority of the 19x148 cells in the crossing 
are empty, but  some have  relatively  large numbers. In the second example 
the majority of cells are again empty  but also there can be at most one entry 
per cells scattered through the crossing. In the latter sense these data are 
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sparser. The methods to be presented are generally applicable. In general, 
however,  such varying features of crossings will inevitably affect  analytical 
results,  particularly in the accuracy and  precision of any estimates. It has 
also been recognised that computational efficiency may also be seriously  
affected (Clayton and Rasbash,1999). Future methodological investigation is 
diagnosed as necessary before a fuller  store of knowledge is available.. 
 
The A level example will also introduce weighted random effects into the 
analyses. There are 145 teachers involved in the teaching groups and they  
may be  supposed to be another specific source of heterogeneity to be 
disentangled and specified. Teacher effects are of obvious interest in their 
own right. However, without separate consideration they may confound with 
other features of group heterogeneity. Here each teacher usually teaches 
several groups. If additionally the same one teacher throughout its course had 
taught each group, then a three-way cross-classified structure would be a 
natural extension. However, except in a few isolated cases this is not so.  
Each group has up to six different teachers throughout its course, making 
their contribution in a split plot way. It is proposed to handle this  by modelling 
the overall teacher effect on a response as a weighted average of the effects 
of the several teachers making a contribution. Choosing weights as  
proportions of the course length taught by each teacher has proved 
successful. Detailed timetable information in the data facilitates this. Other 
weighting schemes have been evaluated and results are relatively insensitive 
to choice. The weighting of random effects in this way is somewhat different 
from, but inspired in derivation by the ideas of Hill and Goldstein (1998). In 
linear models only, they  apply weighting to structures where there is multiple 
membership of units at a level or where it is desired to attach probabilities to 
missing  unit identifiers at levels in the data 
. 
Models and estimation 
 
For six ordered categories of A level subject grade the logit model used for 
the cumulative distribution over grades is 
 

1, 2 1 2 1 2

( )
( ) ( , )

1

log ( )
L

s
i j j s i j j j jit x u uγ θ β

=

= + + +∑ l l
l

, s=1,2,……,5.  

The  j1 and j2 indices range over teaching groups and students. Fixed effects 
dummy variables were introduced for the six colleges and are included 
amongst the fixed coefficients used.  The model is two level with separate 
additive  random  effects for group and student at level 2.. For inference  
purposes these are assumed as usual to be normally and independently  
distributed with  variances 

1

2
uσ  and  

2

2
uσ  to be estimated   Level 1 observations 

indexed by i are lodged within cells (j1,j2) of the level 2 crossing. In general 
this model could also be elaborated in many ways, such as more crosses,  
more levels and random coefficients.  It is also possible for the crossed effects 
to interact. With many colleges, their effect might have been represented as 
random at level 3.  Further the  coefficient, of a prior ability variable (the first) 
was considered as random at the teaching group level  in model exploration. 
Results  were uninteresting and will not be presented. However, these  
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elaboration serve to give an example of  more complex model specifications 
that could be  entertained, 
 

 This is   1, 2

2 1 2 1 2 1 2
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The elaboration of the indexing and introduction of the level 3 effect and the 
prior ability  coefficient  random across teaching groups may be noted. 
 
An extension of the basic example to encompass weighted random teacher 
effects  uses  a model of the form 
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The  teacher random effects are denoted by 

3j
u  with variance 

3

2
uσ  . In the 

weighted contribution  the sum ranges across all J3  teachers in the study,. 
However, for each  observation most of the 

1 2( , ) si j j jw  will be zero . The non-

zero weights will be set  by the teaching group of the entry observation, 
according to the relative contribution of the few teachers involved. 
 
The theory of estimation of  similar models for continuous response is given 
by Goldstein (1995) and Raudenbush (1993). We apply ordinal models. Since 
the crossed  effects are in the linear predictor above level 1 many of the 
aspects of the methods that have been suggested for handling such 
structures carry over readily. Mostly these involve reformulating the models in 
various ways so that  random effects can be treated hierarchically. Details are 
provided in the MlwiN manual, which also discusses fully the actual setting up 
and worksheet management. Some very detailed understanding of the 
complexities of the data structure is required for this. The synthesis of this 
with quasi- likelihood procedures for ordinal data is provide in a specially 
written MlwiN  macro  ORDCAT written by this author. This will ultimately  be 
incorporated in the MULTICAT suite but is currently downloadable with user 
notes from www.bham.ac.uk/economics/fielding.  
 
 
The example application: Subject grades at GCE Advanced Level in Six 
Colleges: group, student, and teacher effects. 
 
 
The first  two columns  of Table 6  present estimates for a base and 
elaborated hierarchical logit  models for entries within 317 subject-teaching 
groups. The responses are 3717 A level entries  with six grades of outcome.  
(single subject students have been excluded as representing a special group) 
These models  ignore the fact that  responses were not independent across  
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Table 6  Parameter estimates for cross-classified and weighted random effects models for 
performance in subjects at General Certificate of Education at Advanced Level  in six colleges 
for post compulsory school  aged students. The response is the six point graded result of a 
subject entry. There are 3717 entries  within 317 subject teaching groups from 1522 students 
The number of teachers involved is 145. ( estimated standard errors of parameter estimates 
are in parentheses) The base  for Subject Group dummies is Social Sciences. The base for  
Institution dummies is  medium sized Further Education College: FEC, TC, SFC denotes 
Further Education, Tertiary and Sixth Form Colleges  
 
 Base 

teaching 
group model 

Teaching 
group model 

Base model 
with student 
random 
effects 

Model with 
student 
random 
effects 

Base model 
with student 
and 
weighted 
teacher 
effects 

Model with 
student and 
weighted 
teacher 
effects 

Fixed effects       

1θ  -1.67 ( 0.07) -1.54 ( 0.28) -1.46 ( 0.07) -1.33 ( 0.27) -1.66 ( 0.08) -1.57 ( 0.28) 

2θ  -0.73 ( 0.06) -0.47 ( 0.28) -0.61 ( 0.06) -0.44 ( 0.27) -0.72 ( 0.08) -0.51 ( 0.28) 

3θ   0.17 ( 0.06)  0.59 ( 0.28) 0.21 ( 0.06) 0.45 ( 0.26) 0.19 ( 0.08) 0.53 ( 0.28) 

4θ   1.08 ( 0.06) 1.67 ( 0.28) 1.05 ( 0.06) 1.35 ( 0.27) 1.09 ( 0.08) 1.58 ( 0.28) 

5θ   2.48 ( 0.08) 3.32 ( 0.29) 2.34 ( 0.07) 2.75 ( 0.28) 2.48 ( 0.09) 3.20 ( 0.29) 

       
STGC:GCSE score 
at enry to A Level 
Standardised  

 1.33 ( 0.05)  1.21 ( 0.06)  1.32 ( 0.05) 

STGC squared  0.27 ( 0.02)  0.22 ( 0.03)  0.27 ( 0.02) 
Female Gender   -0.12 ( 0.05)  -0.07 ( 0.08)  -0.14 ( 0.07) 
Interaction of STGC 
and Gender 

 -0.18 ( 0.06)  -0.14 ( 0.08)  -0.20 ( 0.06) 

SUBJECTS:       
Art, Design & 
Technology 

 -0.08 (0.20)  -0.06 ( 0.19)  -0.05 ( 0.21) 

Mathematics  -0.40 ( 0.17)  -0.60 ( 0.19)  -0.17 ( 0.24) 
Sciences  -0.38 ( 0.16)  -0.48 ( 0.15)  -0.41 ( 0.18) 
Humanities  0.12 ( 0.16)  0.04 ( 0.15)  0.13 ( 0.18) 
Languages  -0.49 ( 0.23)  -0.46 ( 0.21)  -0.27 ( 0.26) 
General Studies  -0.52 ( 0.40)  -0.52 ( 0.34)  -0.44 ( 0.38) 
       
COLLEGES:       
Large FEC  0.16 ( 0.29)  0.14 ( 0.29)  0.34 ( 0.39) 
Medium sized TC  0.99 ( 0.30)  0.81 ( 0.30)  0.89 ( 0.31) 
Small SFC  0.85 ( 0.31)  0.83 ( 0.32)  0.70 ( 0.34) 
Medium sized SFC  -0.12 ( 0.29)  -0.12 ( 0.28)  -0.59 ( 0.34) 
Large SFC  0.58 ( 0.26)  0.46 ( 0.27)  0.33 ( 0.29) 
       
Random effects 
Variance 

      

Teaching groups 
 
% of lv  residual 
variance  

0.7083 
(0.0785) 

 
17.7 

0.7308 
(0.0807) 

 
18.2 

0.5109 
( 0.0607) 

 
9.4 

0.5412 
( 0.0620) 

 
10.7 

0.2145  
(0.0711) 

 
5.2 

0.1282  
(0.0614) 

 
3.1 

Students 
 
% of lv  residual 
variance 

  1.6402  
(0.0933) 

 
30.1 

1.22 
(0.0766) 

 
24.1 

0.2792  
(0.1164) 

 
6.7 

0.2412  
(0.1138) 

 
5.9 

Teachers 
 
% of lv  residual 
variance 

    0.3491 
(0.1623) 

 
8.4 

0.4521 
(0.1581) 

 
11.0 

       
       
Extra- multinomial  0.953 

(0.010) 
0.955 

(0.010) 
0.696 

(0.006) 
0.685 

(0.006) 
0.955 

(0.010) 
0.971 

(0.010) 
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groups due to  student effects in common. Indeed this was the type of model 
initially entertained in work on teaching group effectiveness before it was 
realised that it may have been miss-specified. However, these models  
provide a point of comparison for models with more elaborate specifications. 
The second two columns introduce the cross-classified  student effect to 
handle this nesting of entries within 1522 students. Disentangling the group 
effects and the  effects of the 145 teachers  involved in them is  attempted in 
the final 2 columns. 
 
The same set of elaborating  explanatory fixed effect covariates  was used in 
each case. Those presented were a  culmination of much deeper exploration 
of potential fixed effects for which data were available but  which proved 
unfruitful. These included some teaching group context effects such as size 
and aggregate process variables such as attrition from the course. The main 
object of this example is to focus on the elaboration of random variation but  
some comment may be offered on the fixed estimates. The broad pattern of 
effects is similar across the differently specified models. The first four effects 
are for variables measured  at the student  level. STGC  is  standardised from  
the average of a number of  GCSE subjects taken by students usually just 
before embarking on their two year A level courses. A quadratic term is also 
required for this. There is a marked ceiling to these  averages and they are 
skewed to this ceiling. These factors may explain the quadratic effect. 
However, higher order polynomials are not required for the performance 
function as happens with linear models of the same response. The negative 
gender coefficients indicate that girls make less progress than males. By 
contrast, although not illustrated here, positive female effects emerge if STGC 
is not controlled and unadjusted performance is the issue. This phenomenon 
is also encountered in an analysis of a national 1997 cohort by Yang, Fielding 
and Goldstein (2000). There is also a negative  interaction indicating that girls 
have a smaller STGC 'slope'  effect. This will mean that lower ability girls will 
make more progress than similar boys but vice-versa at higher ability levels. A 
level subjects are categorised into broad groups and the dummies in Table 9 
are relative to Social Science. There are some important subject effects. 
There is a vigorous debate in the literature about whether results such as this 
mean that  Mathematics, Sciences and Languages can be perceived as more 
difficult. (Fitz-Gibbon and Vincent, 1997; Goldstein and Cresswell, 1996; 
Newton, 1997). This will not be pursued here. The six colleges represent a 
range of sizes and types found in British post school education (Belfield et al, 
1996). College dummies are relative to a medium sized Further Education 
college. It is known that college size and type do make a difference. They 
have been introduced here in  fixed effects as relevant block  adjustment 
controls. There are too few in this data to draw generalisations apart from 
differences between specific colleges in the data.. In the  tables both sets of 
dummies characterise the teaching group and teacher levels. 
 
There are some differences in detail in estimates of fixed parameters across 
the three scenarios. They must be evaluated in the light of the relationships to 
extra controls that the introduction of further random effects implies. Effects 
on log odds mirrored in the coefficient estimates are net of random effects.. 
Thus we might expect some changes when student heterogeneity is 
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introduced into the teaching group models, since they are then net of 
unmeasured student attributes. On a lv linear model  interpretation  there will 
also be  consequent scale changes. The reduction in student variable 
coefficients is proportionately in line with changes in the cut point estimates 
indicative of rescaling. However, there are uneven changes in the subject and 
college dummies. They are not consonant with scale changes and those of  
the associated net log-odds. Part of the reason for this may be the clustering 
of student entries into certain subject groups and the attraction of some 
colleges for certain types of student. The mathematics  and science effects 
are much more sharply defined. On investigation, the weighted teacher model 
would appear to have similar implicit conditional  lv  variability to the teaching 
group model. Further the cut-points and student variable coefficients have 
similar values. Mathematics and language effects relative to Social Sciences 
are no longer significant. It might be  conjectured that subject effects observed 
in earlier models might be inextricably bound up to some extents to the type of 
teachers that  deliver them. On introducing a teacher effect the net effects of 
subjects will thus change. Similar comments may be made about the 
changing pattern of college effects. There is quite a lot of complexity in these 
patterns, which might be unravelled by deeper investigation and more 
extensive data. The results do, however, pose some intriguing questions in 
the study of educational progress. They cannot be fully investigated here.  As 
a final detailed point about the fixed estimates it may be noted that there are 
only minor changes in their estimated standard errors as variance 
specifications are refined. However, it may be pointed out that in most 
statistical investigations the accuracy of these estimates is sensitive to what is 
assumed about the specifications of variance. In general more appropriate 
specifications lead to better inferences.   
 
The variance component estimates across the models raise many interesting 
issues of both methodological and substantive nature. In the teaching group 
model the covariates reduce the teaching group and entry variation 
proportionately. This is seen in the similar percentages ( 17.7 and 18.2) 
attributable to groups relative to standardised entry lv variance (π2/3). An 
approximate scale calculation yields a variance  reduction of the order of 30%. 
Introducing a student cross-classified random effect into the base model 
reveals two interesting features. Firstly part of the teaching group variation is 
now explicable by the differences of students selected into them. Students do 
not make an independent contribution within groups since their effects are 
common to certain groups. Secondly , variation amongst students is fairly high 
at  30% of  total variation. However it is relatively much  less than the 60.5% 
represented by the lv variance at the entry level. On this evidence there is 
much variation between the A level grades of subjects taken by each student. 
This point is conventionally recognised  by some  university admissions 
officers who specify sets of  particular grade achievements for specific 
subjects rather than rely on aggregate points scores. For many purposes the 
latter hides the diversity in addition to being a dubious scaling device. In the 
model with student effects the greatest relative impact of the control 
covariates is on the student variance, which may be expected.. 
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The weighted teacher models seem to exhibit some contrasting variance 
estimates. Due to its nature this model and the split plot structure it reflects 
has special features that need to be accounted for. Further detailed 
investigation of the data and the nature by which certain types of teacher 
associate with certain types of student and subject group would be required. 
Such an investigation is beyond the present illustrative purpose. However, a 
few important comments on the results may be made. One is that the 
variance contributions of teacher  random effects to sampled observations are 
not conventionally additive. If the teacher variance estimate is 2ˆTσ  then it is   

3

( , )1 2

3

2 2

1

ˆ
i j j js

J

T
j

wσ
=

∑ . Thus , for example a group with two equally weighted teachers 

would have a contribution  of 2ˆ / 2Tσ , whilst one with four equal weighted 

contributes 2ˆ / 4Tσ . This shrinking of the variance contribution may be expected 
in that the overall teacher effect is a weighted average of several independent 
effects. Teacher effects may be important but their allocation to certain types 
of group and student  may mean they alter other net random effects and may 
at the extreme cancel each other out. It may be asserted that observations in  
groups with larger number of teachers would contribute relatively  more to 
residual entry variability. These  factors may explain the apportionment of 
variances evident in Table 6  in  a complex way. For the present  purposes an 
examination of the weighted model in its own right reveals some useful 
insights. It is apparent from the base model, for instance, that on the same 
scale teachers exhibits more variability than either students or groups when 
they are jointly considered. Observed student progress and its variability 
would seem to  have as much to do with the teachers they are exposed to as 
anything else. The same may apply to group variability. The control covariate 
model further adds to this assessment of the importance of teachers. Data on  
conventional teacher characteristics such as age, gender, length of service, 
education, and training are available. These have been tried in models with  
weighted fixed effects but none proved useful in explaining teacher effects. 
Teachers obviously  matter but it  is a challenge to educational research and 
practice to explain in what way. Some methodological tools to unravel 
complex effects have been provided. What is further required is more 
attention to study designs in relevant research  and the collection of detailed 
data reflecting the complex structures.   
 
Rejoinder 
 
(1)We have stressed available methodology  which is an aid to explanation 
even for designs which are not experimental manipulations. What is usually 
required, however, is more data  and attention to its collection 
 
(2) Readers requiring more familiarisation with multilevel models can teach 
themselves using the web based teaching resource TraMMs (2000).Details of 
how to access this are given in  Appendix B 
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