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1 INTRODUCTION AND MOTIVATION 

 

In the social sciences  ordered category response variables are often converted to arbitrary 

points scores. They are then frequently modelled by methods appropriate for continuous 

interval scale dependent variables. Up to recently this has certainly been the norm in official 

and research literature on educational achievement grades. In particular much analysis  of 

hierarchically structured data with normal theory linear multilevel models proceeds in this 

way. Statisticians and others have for some time pointed out the methodological and 

substantive deficiencies of modelling by the imposition of  arbitrary measurement scales on 

such grouped ranked responses. These are particularly evident when the number of categories 

is small, as is common, for instance, in educational gradings or in opinions and attitudes 

The limitations of  linear modelling of category scores that have been raised in the 

literature) are many and  varied. These are rarely spelled out in detail but are reviewed in 

Fielding (1999). There are  measurement  and substantive considerations  about the scaling 

implied by any sets of arbitrary scores, particularly when there is an attempt to do ‘funny 

arithmetic’ on  tied rank orders. Questions arise in linear  modelling about whether effects 

operate additively on a particular points scale rather than some other arbitrarily chosen one. 

Continuous distribution properties applied to discrete measurements lead to difficulties. Of 

prime importance, even if the scaling issues where resolved,  is estimation  bias when 

grouped data is observed. This is well recognised in traditional single level modelling 

(Stewart, 1983). Simulation studies by Fielding (2000a)2 have shown that estimation of 

variance components, which are central to multilevel modelling, is affected even more 

seriously than that of fixed parameters 

The popularity of scoring models for ordinal data possibly owes much to the 

familiarity with standard linear multilevel models and accessible software. However, it 

should be apparent there is a motivation to develop procedures which model the ordinal 

categorised responses directly, and that further make no arbitrary scaling decisions. 

Generalised linear models for single level structures have been developed for some time 

(McCullagh and Nelder, 1989). Only recently are generalised linear mixed models (GLMMs) 

for ordered categories, and appropriate for multilevel and other random effects, becoming 

known and  more widely available (McCulloch, 1999). After describing modelling 



frameworks, this paper will review the availability and uses of  some of the existing methods 

and software. We then focus on the multilevel modelling software MlwiN (Rasbash et. al. 

1999) and add to knowledge by suggesting the use of the specially written MULTICAT 

macros for categorical responses (Yang, et. al. 1998, 2000a). The latter are under continuous 

review and the latest version offers procedures for cross-classified and weighted random 

effects at various levels in the structure. The latter are the focus of the applications to be 

discussed. 

Apart from statistical considerations discussed, it is becoming apparent that ordinal 

data models have many practical advantages. Fielding (1999), for example, has shown that in 

hierarchical models of primary school progress, simpler patterns of  explanatory fixed and 

random effects emerge than for points models. A specific instance is that it no longer 

becomes necessary to introduce higher order polynomial terms  in intake ability controls. In 

linear models the latter have been suggested as being required to handle distortions due to  

‘ceiling’ and  ‘floor’ effects which cannot be evidenced by observed grouped grades on the 

response  at the top and bottom of the scale. Yang et al. (2000b), in another educational 

example, have also commented on the greater flexibility, ease of interpretation,  and practical 

usefulness of generalised models. For instance, the ability to directly predict outcome 

‘chances’ or  probabilities of  achieving certain grades given a profile of effect values, is a 

major advantage. This paper also demonstrates that more interesting comparisons can be 

made between  level 2 school random effects. Variations between progress in achievement of 

certain grade thresholds may be of as much practical concern as average levels of adjusted 

outcome. 

A particular motivation for extending models in the present work is informed by the 

increasing awareness in  school effectiveness work that effects operating at any level in 

educational structures are complex and cross-classified (Coe and Fitz-Gibbon, 1998). We 

desire modelling frameworks for ordinal data which attempt to disentangle and unconfound  

these effects. Two similar examples of  cross-classified effects in this area are provided by 

Goldstein and Sammons (1997) and in the MlwiN user guide (Rasbash et. al, 1999), although 

the analyses use linear models and points scores for educational grades. In both the issue 

addressed is of the continuity of school effects at different stages in childrens’ careers. The 

question arises as to what effect does the primary school attended have on later performance 
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at secondary school. Students are nested within secondary schools but they are also nested 

within the primary schools they came from. Thus at a level above the child  there is an  

unbalanced cross-classification of primary and secondary schools and models to estimate the 

joint contributions of these are required. Using the generalised model for ordered data to be to 

be presented here Fielding (2000b) re-analyses the data set used in the second example. In 

this paper we will discuss an example structure where effects may be even more complex. 

Cost-effectiveness studies of teaching groups in English colleges in the post-compulsory 

education sector, providing instruction for the General Certificate of Education at Advanced  

Level,  have been undertaken by Belfield, Fielding and Thomas (1996). The data are not 

hierarchical in that students may be present in several teaching groups. Unless it is 

disentangled teaching group effects may be confounded with the students who select a 

particular combination of subject groups. Cross–classification of students and teaching 

groups in a model  facilitates the separate estimation of their effects. In attempting to unravel 

the tri-partite confound (Coe and Fitz-Gibbon, 1998) we are also interested in  teacher effects 

separate from those of the teaching group. If groups were taught by the same teacher 

throughout the course and teachers taught several groups we could extend the structure and 

models to deal with three way classifications. However single teacher provision is the rare 

exception and  up to five different teachers may be involved in a split-plot way. This 

motivates our suggestions for extending our models to encompass weighting teacher 

contributory effects. Unlike the  school crossing examples , the structures are very sparse. For 

example there can be only one observation on a crossing of  students and groups and the 

majority of cells are empty. This may affect the quality of the estimators proposed and this 

matter is considered  in the last section of the paper 

 

 

2 MODELS AND ESTIMATION 

 

2.1 Hierarchical Odered Category Models 

 

Traditional normal theory linear regression models relate conditional expectations (and 

variances) of a continuous response to linear  predictors (LP) involving covariates. As 

mentioned in the introduction the assumption that arbitrary point scores applied to ordered 
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category responses follow such models is somewhat untenable. By contrast standard single 

level generalised linear models (GLMs) deal directly with the conditional  probability 

distribution over the set of ordered  categories. They do this  by  relating the conditional  

cumulative distribution over the categories through a ‘link’ transformation to a linear 

predictor (LP). Each of the set of cumulative probabilities is by definition constrained to lie 

between zero and one. Usually, though not always, when a link function is applied to them 

the results of the transformation will occupy the whole of the real line. There are then no 

constraints on the feasible  values arising from effects of covariates in the LP. For these and 

other reasons the link function is often the inverse of some standard distribution function of a 

continuous random variable. Common choices in application are the inverses of the standard 

logistic, normal and extreme-value ( Weibull) distributions which yield respectively probit, 

logit , and complementary log-log links. 

 A GLM can be extended by including random effects in the LP  in the same way that 

linear fixed effects models are extended to linear mixed models. The resulting generalised 

linear mixed models (GLMMs) for ordered categories are only fairly recently receiving more 

than a minimum of attention. McCulloch (1999) reviews the general class of GLMMs and 

their estimation. These type of models are the focus of this paper. Often the random effects 

are hierarchical effects arising out of multilevel structured processes and data. In these cases 

the GLMMs for ordered categories can be readily  seen as a particular  generalised version of 

continuous response multilevel models, which have received much attention in the past  

decade or so. 

 For instance, in a three level  educational structure of students within classes within 

educational institutions we may have a graded  outcome represented by  a set  of  S categories 

labeled for convenience  s=1, 2, 3, …….., S, in order from low to high. For a logit model  

The cumulative probabilities ( )s
ijkγ  of  achieving  at least grade s  for student i  in group j of 

institution k  are modelled by   
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with ( ) 1.S
ijkγ = by definition. The ( )sθ  parameters  are often referred to as category thresholds 

or cut points. The  level 3 random effect 0kv  and the level 2 random effect 0 jku  are assumed 

independently normally distributed around zero  with variances 2
0vσ  and 2

0uσ  respectively. X 

is a  data matrix of covariates excluding an intercept term ( not separately identifiable from 

the ( )sθ ). The vector of covariate effect  parameters is 1 2{ , , }Lβ β β ′=â … . For extended 

models some elements of this vector may also be random at any level  A coefficient random 

at  only level 3, for instance is then  subscripted by k and we have. For such models the set of 

effects at a level are assumed jointly multivariate normal and covariances will usually be 

specified. Effects across levels are assumed independent. The negative sign on the right hand 

side of the model equation is for interpretational convenience in results. Substantively 

positive effects on the response itself shifts its distribution up and there is a negative effect on 

the cumulative probabilities and their logits. We note that there is no explicit level 1 

disturbance term in these models since variation at this level is governed by the set of 

probabilities, although extra-multinomial variation can be introduced. In our later example 

we also  use a probit model with   ( )( )s
ijkL γ  as the inverse of the standard normal 1 ( )( )s

ijkγ−Φ . 

The logit model has the easy interpretation of a linear effects on cumulative log-odds constant 

across s. This is equivalent to a constant multiplier of cumulative odds yielding the attractive 

proportional odds property (McCullagh and Nelder, 1989).  

 A variety of estimation procedures have been suggested for these ordered category 

models. Harville and Mee (1984) with a probit model  iterate between extensions of best 

linear unbiased prediction based estimates of fixed effects and a Taylor series expansion to 

approximate estimation of random parameters using restricted maximum likelihood. Jensen 

(1990) estimates with maximum likelihood in a two level  probit model with a single random 

effect. The  Gaussian quadrature methods of Anderson and Aitkin (1985) evaluate normal 

integrals in the likelihood. Ezzett and Whitehead (1991) have a crossover trial with a single 

random effect in a logit model. They propose Newton-Raphson numerical integration 

methods to evaluate integrals. Hedeker and Gibbons (1996) use maximum marginal 

likelihood. They describe a Fisher scoring solution for either a logit or probit response 

function and use multidimensional quadrature to numerically integrate over many random 

effects. These are implemented in the freely available MIXOR software (Hedeker and 

Gibbons,1998) which is the most flexible of the methods discussed so far.  For our purposes 

we regard many of these methods to be limited by scope, number of levels possible, or 



exclusion of  random regression coefficients. All require complicated numerical integration 

which makes for computational restrictions. The analyses we present use the iterative 

generalised least squares  procedures of the  multilevel modelling software MlwiN (Rasbash, 

et. al. 1999) due to its wide availability, flexibility, adaptability and extensive macro 

facilities. Goldstein (1995) gives theoretical details of models can be  approximated by a 

various linearisations and cast into forms of  a standard linear model to which the MlwiN 

procedures can be applied. It also allows extra-multinomial variation at  level 1 which may be 

appropriate if the conditional probabilities are mis-specified in various ways. We will discuss 

later how the inclusion of a multinomial term may be beneficial for estimation even if there is 

no a priori modelling reason for its inclusion. The method is available as a set of macros 

MULTICAT. The estimation options and details of how to set the model up are given in the 

manual by Yang et al (1998)). The results  in this paper use a PQL2 option, so known since it 

uses second order terms in the linearisations leading to  what are in effect penalised 

(predictive) quasi-likelihood estimators. The macros are under continuous review and a 

forthcoming official  release (Yang, et. al. 2000a) will incorporate a probit link that is not 

currently available. It will also incorporate methods for cross-classified random effects 

models which we will  now discuss. 

 

 

2.2 Cross-Classified Models For Ordered Category Responses  

 

In the introduction we motivated the desire to extend the hierarchical  models to GLMMs 

with cross-classified random effects at  certain levels. We consider only two level models 

with a crossing at level 2 . A  simple  logit model for ordered responses  has the form  

 

 

2 2 1 2 1 2
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Level 1 units are now nested within  cells (j1, j2) at level 2 of two  cross-classification features 

indexed by j1 and j2 each with their separate additive random effects. It is also possible to 

introduce an interaction effects between these features. The structure of these random effects 

is no longer hierarchical . The effects are assumed independent at level 2 and as usual 



normally distributed As with the hierarchical model the regression parameters can also be 

made random across either or both of the crossed level 2 units. In the application we discuss 

the model lodges Advanced  level subject entries within a crossing of  students and teaching 

groups  

 Goldstein (1997) discuses the iterative generalised least squares theory for cross-

classified random effects for unbalanced data structures  at any level in the hierarchy. 

Efficient algorithms for their implementation are evolved  by Rasbash and Goldstein (1994) 

and a range of special commands are available in MlwiN to set these up. Raudenbush (1993) 

has conceptualised similar approaches in terms of exchangeable regressions. The units for 

one of the cross classified factors are declared as an  hierarchical level in the usual way and 

effects are  random variables exchangeable across these units. For the other cross-

classification factor dummy variables indicative of unit  membership are set up. The unit 

effects are the regression coefficients of these variables which are exchangeable within the 

hierarchical level units of the first cross-classified factor. In implementation this is achieved 

by constraining the variance of the dummy random effects to be equal. In effect the crossed 

effects model is reformulated to a strictly hierarchical one, which cam be analysed by 

multilevel methods.  A variety of ways of improving computational efficiency through model 

set up  are discussed in the cited references. Of particular importance are ways of taking 

advantage of any unique blockings of the certain combinations of crossed effects. In our 

modelling example, for instance, the crossing of students and groups is within colleges. Due 

to their small number college effects are treated through  fixed effect dummy variables. 

However, although they are not treated as an additional level , they can be regarded as a 

factor by which the lower  crossing is blocked   

 The theory and methods for crossed effects have so far been treated in terms of 

continuous response linear models. They can also be extended to multi-way crossings at a 

level and to be operative at several levels. In generalised models the type of  crossing of 

effects discussed occur at levels which are represented only by terms in the LP. Thus 

procedures for reformulating the model in hierarchical terms carry over straightforwardly. 

Once this is done the resultant form may then be treated by means described in Section 2.1. 

For technical reasons only  MULTICAT cannot at present deal with this synthesis of ordered 

category responses and crossed-effects, although the implementation  is straightforward for 

nominal category responses. Thus a special  stand alone macro, ORDCAT3, has been written 
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for these purposes and which will be incorporated in the future software  developments 

(Yang, et. al.2000a).  

 

 

2.3 Cross-Classified  Weighted Random Effects 

 

We desire to incorporate a further crossing factor  above the level of  A level entries but one 

where there are multiple effects on each observation. Several teachers are involved in a 

subject group and each teacher may teach several groups. The logit  model we propose to 

handle this is of the following form: 

 

 

 

3
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The contribution of  teachers to a group have their  random  effects 
3

3
ju  weighted according to 

the proportion of  teaching time  provision of a group they  taught. In the model the weights 

1 2 3( , )i j j jw  sum to unity across all teachers. For a particular teaching groups the majority of 

these weights will be zero. There may be substantive objections to the choice of weights. 

However, in implementation of sensitivity analyses, the teacher variance parameters have 

proved relatively  robust to  variations of this  choice. Although slightly different in 

conception the model details are formally similar to those devised by Hill and Goldstein 

(1998)  for multiple membership of units and missing level identifiers. 

In principle the methods for strictly cross-classified structures can carry over to this 

sort of model. What is required is the replacement of  the design matrix of  dummy  indicator 

variables for exchangeable crossed effects  by the  weight design matrix. Hill and Goldstein 

(1998) explain this. Again special MlwiN commands are available to do this. Once the matrix 

and other model details are set  up  the ordered category methods of ORDCAT can then 

handle it.  
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.3  TEACHER, STUDENT, AND GROUP EFFECTS IN AN ORDINAL MODEL  

 FOR  GCE ADVANCED LEVEL SUBJECT GRADES 

 

3.1 Background 

 

In studies of cost-effectiveness of GCE Advanced Level provision we have become aware 

that  variations within institutions are sometimes for more relevance than institutional 

differences (Belfield, Fielding & Thomas, 1996) This is in concordance with a switching 

away in much educational effectiveness literature from interest in effective schools to effective 

classrooms. Here we will be concerned with a side of this problem,  analysis  of A level 

outcomes, suitably adjusted, at the teaching group level. The complexities of the structure of A 

level provision, and indeed the data we have,  have motivated the implementation of the type of 

model discussed in the previous section. We will first  mention  this structure, associated data, 

and the methodological problems it poses.  We hope that some of the  methods we have  

proposed will have wider  relevance since similar structures are quite common Although the 

concern is with educational achievement these issues are of general relevance..  

 

 

3.2 Example Structure And Data 

 

The  conclusions in educational research about variations at classroom level within institutions  

also begs the question of what is going on at this level  This problem of disentangling what is 

happening is clearly put by Coe and Fitz-Gibbon (1998) who say, 'The combination of subject 

taught, teacher and pupil group is, of course, unique for each class, and effects could be 

attributed to all three parts of this tripartite confound'.  The way in which teachers and classes 

have sometimes been treated synonymously in single teacher courses  is not entirely 

unequivocal.  Also Hill and Rowe (1996) have  commented on the sparsity of research on 

teacher effects and that this may be due  to  the fact of several teachers being involved in  a 

classroom outcome. From the structure of our data, the information it contains and the 

methodological approaches we suggest,  we have an opportunity to make some advances. Also 

the pupil group is unique for each class but it is often argued that satisfactory control cannot 

always be exercised by taken cognisance of all relevant pupil characteristics. Yet as students 



cannot be treated as randomly allocated to teaching groups (classes) there may yet be important 

but unmeasured sources of student variation which are associated with selection into teaching 

groups. Any differences between groups may be partly reflecting these.  A within group random 

student disturbance caters for unmeasured variation but may not adequately cater for these 

systematic effects which may be confounded with those of groups.  We hope in hierarchical 

situations that sufficient control has been exercised. The disentangling of many of these possible 

confounding factors is an important set of problems, which, in a particular context we try to go 

some way towards addressing here. The additional feature of our data which is both a problem in 

itself but also presents an opportunity to resolve these other problems  is the fact of multiple 

representation of students in groups. In  strictly hierarchical situation we hope that with 

sufficient control unmeasured student influences are not  systematically related to group effects. 

In the present situation  since  entries are correlated across groups due to  common individual 

unmeasured influences  school effects may be confounded with  those of students. Considering a 

cross classification of  students and groups resolves some of these issues 

 The subset of the  A level data  set used has 3717  entries nested within 317 teaching 

groups (classes), which in turn are  nested within 6 colleges. The subset comes from entries in 

these colleges from full course students, i.e. from those taking at least three subjects. On the 

surface this is a normal 3-level structure, although due to their small number colleges have 

been treated as a fixed effect blocking factor in later analyses.  However, between three and  

five entries are made by each of 1522  students and  there is thus an additional crossed 

nesting of  entries within student at level 2. Ignoring this crossing may result in teaching 

group differences being confounded with students and disentangling class such confounding  

effects is the concern raised above. We compare  possible effects in later analyses, Modelling 

of unbalanced cross-classified designs is a sound methodological development to handle this 

There are 145 teachers involved in the teaching groups and no teaching group has less 

than two teachers. Teacher effects are of obvious interest in their own right. However, 

without separate consideration they may confound with other features of group heterogeneity.  

The response variable we use is  the A level grade with six ordered categories A, B, 

C, D, E, Fail. The main explanatory control variable used is  a measure of prior ability , a 

standardised score on the  General Certificate of Secondary Education (STGC) taken by 

students before they embarked on  A levels. Also used are gender, seven broad subject groups 

and  the college attended. Dummy variables have been created for subject groups  relative to 

a Social Science base group. For the  six colleges with a range of sizes we use the acronyms 



FEC, SFC , and TC  respectively for three college types,  Further, Sixth Form and Tertiary. 

Dummies are formed relative to  the medium sized FEC base. 



Table 1.   Parameter Estimates For Hierarchical ,  Cross-classified And Weighted 

Random Effects Models For Performance In Subjects At General Certificate Of 

Education At Advanced Level  In Six Colleges For Post Compulsory School  Aged 

Students 

.  

 Base 
teaching 
group 
model 

Teaching 
group 
model 

Base model 
with 
student 
random 
effects 

Model with 
student 
random 
effects 

Base model 
with 
student and 
weighted 
teacher 
effects 

Model with 
student and 
weighted 
teacher 
effects 

Fixed effects       

1θ  -1.67 ( 0.07) -1.54 ( 0.28) -1.46 ( 0.07) -1.33 ( 0.27) -1.66 ( 0.08) -1.57 ( 0.28) 

2θ  -0.73 ( 0.06) -0.47 ( 0.28) -0.61 ( 0.06) -0.44 ( 0.27) -0.72 ( 0.08) -0.51 ( 0.28) 

3θ   0.17 ( 0.06)  0.59 ( 0.28) 0.21 ( 0.06) 0.45 ( 0.26) 0.19 ( 0.08) 0.53 ( 0.28) 

4θ   1.08 ( 0.06) 1.67 ( 0.28) 1.05 ( 0.06) 1.35 ( 0.27) 1.09 ( 0.08) 1.58 ( 0.28) 

5θ   2.48 ( 0.08) 3.32 ( 0.29) 2.34 ( 0.07) 2.75 ( 0.28) 2.48 ( 0.09) 3.20 ( 0.29) 

       
STGC:GCSE score 
at entry to A Level 
Standardised  

 1.33 ( 0.05)  1.21 ( 0.06)  1.32 ( 0.05) 

STGC squared  0.27 ( 0.02)  0.22 ( 0.03)  0.27 ( 0.02) 
Female Gender   -0.12 ( 0.05)  -0.07 ( 0.08)  -0.14 ( 0.07) 
Interaction of STGC 
and Gender 

 -0.18 ( 0.06)  -0.14 ( 0.08)  -0.20 ( 0.06) 

SUBJECTS:       
Art, Design & 
Technology 

 -0.08 (0.20)  -0.06 ( 0.19)  -0.05 ( 0.21) 

Mathematics  -0.40 ( 0.17)  -0.60 ( 0.19)  -0.17 ( 0.24) 
Sciences  -0.38 ( 0.16)  -0.48 ( 0.15)  -0.41 ( 0.18) 
Humanities  0.12 ( 0.16)  0.04 ( 0.15)  0.13 ( 0.18) 
Languages  -0.49 ( 0.23)  -0.46 ( 0.21)  -0.27 ( 0.26) 
General Studies  -0.52 ( 0.40)  -0.52 ( 0.34)  -0.44 ( 0.38) 
       
COLLEGES:       
Large FEC  0.16 ( 0.29)  0.14 ( 0.29)  0.34 ( 0.39) 
Medium sized TC  0.99 ( 0.30)  0.81 ( 0.30)  0.89 ( 0.31) 
Small SFC  0.85 ( 0.31)  0.83 ( 0.32)  0.70 ( 0.34) 
Medium sized SFC  -0.12 ( 0.29)  -0.12 ( 0.28)  -0.59 ( 0.34) 
Large SFC  0.58 ( 0.26)  0.46 ( 0.27)  0.33 ( 0.29) 
       
Random effects 
Variance 

      

Teaching groups 
 
% of lv  residual 
variance  

0.7083 
(0.0785) 

 
17.7 

0.7308 
(0.0807) 

 
18.2 

0.5109 
( 0.0607) 

 
9.4 

0.5412 
( 0.0620) 

 
10.7 

0.2145  
(0.0711) 

 
5.2 

0.1282  
(0.0614) 

 
3.1 

Students 
 
% of lv  residual 
variance 

  1.6402  
(0.0933) 

 
30.1 

1.22 
(0.0766) 

 
24.1 

0.2792  
(0.1164) 

 
6.7 

0.2412  
(0.1138) 

 
5.9 

Teachers 
 
% of lv  residual 
variance 

    0.3491 
(0.1623) 

 
8.4 

0.4521 
(0.1581) 

 
11.0 

       
       
Extra- multinomial  0.953 

(0.010) 
0.955 

(0.010) 
0.696 

(0.006) 
0.685 

(0.006) 
0.955 

(0.010) 
0.971 

(0.010) 
-       
       



3.3 The Example Results 

 

The first two columns of Table 1 present estimates for a base and elaborated hierarchal model 

for entries within teaching groups and ignores the complexities discussed. This was the type 

of model originally entertained before the possible extra specifications were considered. It 

forma a comparative base  against which to judge the specification of complex random 

effects. The second two columns introduce the comparable cross-classified student effects. 

Disentangling the teacher  and group effects is attempted in the model results in the final two 

columns. 

 The same set of elaborating  explanatory fixed effect covariates  was used in each 

case.  Also, in the results,  a single random effect is illustrated for each factor in each case  

and there are no differential random regression parameters.  The results presented  were a  

culmination of much deeper exploration of potential fixed effects for which data were 

available  and random effects which might have proved promising. A range of statistical 

evaluation procedures ere used including the Wald test procedures available in MlwiN. 

Effects not presented proved unfruitful on both substantive and inferential grounds. Included  

among trial fixed effects  were teaching group context effects such as size and aggregate 

process variables such as attrition from the course. Differential teaching group variation in 

the  STGCSE coefficients with nothing interesting emerging for this situation. 

A  main object of  the analysis has been to  specify teaching group variation and 

effects for input into further work on cost-effectiveness. However,  some comment may be 

offered on the fixed estimates. The broad pattern of  fixed effect coefficients give a similar 

impression across the differently specified models. In any case some  differences may emerge 

in generalised  models due to  the necessary implicit  scale changes between model 

developments. We might expect  better standard  error estimates as we refine the 

specification  and if  these specifications are more appropriate. This  may have implications 

for detailed inferences on the fixed parameters  were such to be performed .  A quadratic term 

is  required for this in all models . There is a marked ceiling to these  STGC scores  and they 

are skewed to this ceiling. These factors may explain the quadratic effect. However, higher 

order polynomials are not required for the performance function as  happens with some  

linear points scores models of the same response (Fielding, 1998). The negative gender 

coefficients indicate that girls make less progress than males. By contrast, although not 

illustrated here, positive female effects emerge if STGC is not controlled and unadjusted 

performance is the issue. This phenomenon is also encountered in an analysis of a national 



1997 cohort by Yang et. al. (2000). There is also a negative  interaction indicating that girls 

have a smaller STGC 'slope'  effect. This will mean that lower ability girls will make more 

progress than similar boys but vice-versa at higher ability levels. There are some important 

subject effects. There is a vigorous debate in the literature about whether results such as this 

mean that  Mathematics, Sciences and Languages can be perceived as more difficult. (Fitz-

Gibbon and Vincent, 1997; Goldstein and Cresswell, 1996; Newton, 1997). This will not be 

pursued here. The six colleges represent a range of sizes and types found in British post 

school education (Belfield, et. al. 1996). College dummies are relative to a medium sized 

Further Education college. It is known that college size and type do make a difference. They 

have been introduced here in  fixed effects as relevant block  adjustment controls. There are 

too few in this data to draw generalisations apart from differences between specific colleges 

in the data.. In the  tables both sets of dummies characterise the teaching group and teacher 

levels. 

In generalised linear multilevel models there is no explicit level 1 variance term 

estimated  since variation at that  level is governed by conditional expectations in the form of  

the conditional probabilities. Thus it is not easy to assess the relative sizes of residual 

variance components within models and changes in these variances as we move from a model 

to a more elaborate one. These features are one of the preoccupations of interpretation of 

linear multilevel models. However,  one interpretation of a logit model is that it characterises 

the conditional probabilities of  responses falling in certain groups of values on a latent 

variable (lv) underlying the ordered categories. If this lv follows a  linear multilevel model 

but with a standard logistic distribution for the level 1 variance then the logit model ensues. 

The estimable  parameters ( )sθ may be viewed as  cut-points for the categories on this lv scale 

(McCullagh, 1980).. For identification reasons the lv is standardised and the implicit latent 

variable whatever the model specification always  has the logistic  variance 2 / 3π  at level 1. 

A similar relationship exists between the probit model and a  normal lv  with unit variance at 

level 1. For a particular model it is fairly straightforward then to assess the higher level 

variance components relative to the latent level variance. However, differently specified 

models will have different scales. consequent on the re-standardisation at each stage. Thus, 

for instance, we might expect introducing  an important explanatory variable to reduce the 

variability in the underlying response at level 1. However  there is always an implicit scale 

change  to standardise this variance to be always equal  2 / 3π . The scale change will  also 

result in rescaling of all  fixed  parameters, random effects, and their variances. Thus without 



taking these scale changes into account it is difficult to compare estimates and in particular  

reductions or otherwise in higher level variance components. Fielding and Yang (1999) 

discuss this problem and devise a very approximate  method of assessing these  scale 

changes. It then becomes possible to rescale and compare parameter estimates across models. 

The method is very rough but it involves finding a  factor which rescales each model to the 

same scale as  base models similar to that of column 1 of  Table 1  A set of logistic 

conditional mean scores for the ordered groups are found from the grouped distribution 

implied by the base model. These constant set of scores are then applied to the grouped level 

distribution in a later model development  and a variance approximated. This compared to the  

variance for the base distribution gives a scale factor,  The roughness of the approximation 

may be seen from the fact of grouping of an unobservable continuous variable but it does 

serve to indicate the order of magnitude of the changes. We present no detailed results here 

on the application of this method  but it is  readily applicable to model results in situations 

where we wished to have detailed   comparisons of  variance changes from  the base model to 

the explanatory fixed effects model under each scenario. We will content ourselves with 

examining the relative sizes of the variance components within each model and how these 

compare across models. This is sufficient for present purposes.   

Since the cut-point parameters on the lv interpretation should be invariant to anything 

but the scale changes, we might expect their estimates to reflect this. With these facts in mind 

we might examine the differences in detail in the fixed parameter estimates in the models of 

Table 1. These must be evaluated in the light of the relationships to extra controls that the 

introduction of further random effects implies. Effects on log odds mirrored in the coefficient 

estimates are net of random effects.. Thus we might expect some changes when student 

heterogeneity is introduced into the teaching group models, since they are then net of 

unmeasured student attributes. On  the  lv linear model  interpretation  there will also be  

consequent scale changes. The reduction in student variable coefficients is proportionately in 

line with changes in the cut point estimates indicative of rescaling. However, there are 

uneven changes in the subject and college dummies. They are not consonant with scale 

changes and those of  the associated net log-odds. Part of the reason for this may be the 

clustering of student entries into certain subject groups and the attraction of some colleges for 

certain types of student. The mathematics  and science effects are much more sharply 

defined. On cursory  investigation, the weighted teacher model would appear to have similar 

implicit conditional  lv  variability to the teaching group model. Further the cut-points and 

student variable coefficients have similar values. Mathematics and language effects relative 



to Social Sciences are no longer significant. It might be  conjectured that subject effects 

observed in earlier models might be inextricably bound up to some extents to the type of 

teachers that  deliver them. On introducing a teacher effect the net effects of subjects will 

thus change. Similar comments may be made about the changing pattern of college effects. 

There is quite a lot of complexity in these patterns, which might be unraveled by deeper 

investigation and more extensive data. The results do, however, pose some intriguing 

questions in the study of educational progress. They cannot be fully investigated here.  As a 

final detailed point about the fixed estimates we may note  the minor changes in their 

estimated standard errors as variance specifications are refined. However, it may be pointed 

out that in most statistical investigations the accuracy of these estimates is sensitive to what is 

assumed about the specifications of variance. In general more appropriate specifications lead 

to better inferences. 

The variance component estimates and their relative sizes  across the models raise 

many interesting issues of both methodological and substantive nature.  In Table 1 we have 

presented the estimates and also in each case expressed them  relative to the total variance 

assuming standard logistic at level 1. In the teaching group model the covariates reduce  the 

teaching group and entry variation proportionately. This is seen in the similar percentages ( 

17.7 and 18.2) attributable to groups relative to standardised entry lv variance (π2/3). The  

approximate scale calculation yields a variance  reduction of the order of 30%. Introducing a 

student cross-classified random effect into the base model reveals two interesting features. 

Firstly part of the teaching group variation is now explicable by the differences of students 

selected into them. Students do not make an independent contribution within groups since 

their effects are common to certain groups. Secondly , variation amongst students is fairly 

high at  30% of  total variation. However it is relatively much  less than the 60.5%  of 

residual variation at the entry level  that remains when student and group differences have 

been accounted for.  On this evidence there is much variation between the A level grades of 

subjects taken by each student which cannot be accounted for by a teaching group effect or 

subject preferences.  This point is conventionally recognised  by some  university admissions 

officers who specify sets of  particular grade achievements for specific subjects rather than 

rely on aggregate points scores. For many purposes the latter hides the diversity in addition to 

being a dubious scaling device. In the model with student effects the greatest relative impact 

of the control covariates is on the student variance, which may be expected. Although we do 

not present results here  a comparison of teaching group residuals from the two models 



demonstrates considerable differences in our  assessment of group effects. This has had 

practical significance in comparing groups within colleges and stresses the importance of 

isolating the  common influence of unmeasured  attributes of students selected into the 

groups.. 

The weighted teacher models seem to exhibit some contrasting variance estimates. 

Due to its nature this model and the split plot structure it reflects has special features that 

need to be accounted for. Further detailed investigation of the data and the nature by which 

certain types of teacher associate with certain types of student and subject group would be 

required. Such an investigation is beyond the present illustrative purpose. However, a few 

important comments on the results may be made. One is that the variance contributions of 

teacher  random effects to sampled observations are not conventionally additive. If the 

teacher variance estimate is 2ˆTσ  then it is  
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equally weighted teachers would have a contribution  of 2ˆ / 2Tσ , whilst one with four equal 

weighted contributes 2ˆ / 4Tσ . This shrinking of the variance contribution may be expected in 

that the overall teacher effect is a weighted average of several independent effects. Teacher 

effects may be important but their allocation to certain types of group and student  may mean 

they alter other net random effects and may indeed at the extreme cancel each other out. It 

may be asserted that the variance of  observations in  groups with larger number of teachers 

would  have a relatively larger contribution from residual entry variability. These  factors 

may explain the apportionment of variances evident in Table 1  in  a complex way. For the 

present  purposes an examination of the weighted model in its own right reveals some useful 

insights. It is apparent from the base model, for instance, that on the same scale teacher 

effects  exhibit  more variability than either students or groups when they are jointly 

considered. Observed student progress and its variability would seem to  have as much to do 

with the teachers they are exposed to as anything else. The same may apply to group 

variability. The  covariate model  which further adds to this assessment of the importance of 

teachers. The subject and college type variables are additionally attributable to the teacher 

level.  Data on  conventional teacher characteristics such as age, gender, length of service, 

education, and training are available. These have been tried in models with the same structure 

of weights for values of fixed effect  teacher variables. None of these  proved useful in 

explaining teacher effects. Teachers obviously  matter but it  is a challenge to educational 

research and practice to explain in what way. Some methodological tools to unravel complex 



effects have been provided. What is further required is more attention to study designs in 

relevant research  and the collection of detailed data, particularly on teachers and teaching 

scenarios. Perhaps the recent interest in randomised controlled trials educational and teaching 

interventions is the way forward. 

 

 

4 THE EXTRA MULTINOMIAL  PARAMETER 

 

In all the results presented an extra-multinomial parameter has been estimated. This is the 

parameter that multiplies the multinomial variance covariance matrix of  the multivariate 

indicator variables representing the category of response at level 1. It may arise in situations 

where the model under discussion mis-specifies the conditional category probabilities. If the 

parameter is unity we have multinomial variation. Discussion of  has been left to the end 

since there are some general issues of interpretation. In one sense its introduction is justified 

on certain accumulating evidence that it improves estimation of model parameters Allowing 

this parameter to be free seems to take up any features of the data  that make the imposition 

of multinomial variation over rigid.  Further,  simulations of  multinomial variation for 

certain structures indicate it may be better to unconstrain it even where it is known that 

multinomial variation holds in the sampled structure. (Yang, 1997;  Fielding and Yang, 1999) 

These references  and Wright (1997) also note that  with certain sorts of sparse data and even 

with known  multinomial variation, analyses result in the parameter being estimated quite 

often much different from unity. Our example data is quite a sparse structure for reasons 

indicated above. However, and importantly, its inclusion seems to improve the estimation of 

other parameters in models. The differences in emphasis on the role of this parameter stem 

from its provenance in controlled experimental designs and models. In such situations and for 

marginal single level analyses the multiplying parameter follows fairly readily from 

clustering in the data (another level) or important uncontrolled variables not specified in the 

probability model (e.g. Williams, 1982). For complex survey data and multilevel designs the 

issue is not so clear-cut. Models can only ever be approximate reflections of complex 

mechanisms going on in the data and ranges of possibilities and specifications will always be 

open to improvement. An important source of extra-multinomial variation is often an 

important level in the structure being missing from the model. Hierarchical models of 

children within schools often ignore a possible clustering effect due to classrooms (Fielding, 

2000b). The balance in the data structure itself will also mean that model estimation is 



affected. The introduction of a multinomial parameter, then, may be regarded as a rough 

provision for these inherent possibilities. If as seems to be the case the estimation is 

improved, then so much the better. It  is on these grounds that it is used in the results here. Of 

course, unless more is known a priori about potential sources or , for instance, that sparse 

data dictates a preference for its inclusion, then the actual interpretation of the value may be 

difficult. It is often a matter of speculation that requires further evidence and  investigation.. 

As has been seen the sparseness and balance of the crossing may have an effect. In Table 1 

the estimate of  0. 696 indicating under-dispersion may be a result of the few observations per 

student or may be due to the lack of specification of the teacher effects. To some extent either 

or both of these may be  washed out when the effects are marginalised jointly in the teaching 

group only model. Much more would need to be know about allocation of teachers and 

students to groups to evaluate these possibilities. However, they  give an idea of the range of 

speculation that is possible. The important lesson is that the parameter should usually be 

included to reflect a range of possible but unforeseen complexities, data sparseness,  and to 

improve estimation. This is recommended irrespective of any attempted interpretation of the 

value of its estimate. 

 

 

5 CONCLUDING REMARKS ABOUT ESTIMATION 

 

The methods presented in this paper  may be seen as a part of a general development of 

analytical tools to analyse complex structures using survey and other data that correspond to 

classical experimental designs but are more flexible (Raudenbush, 1993). Alongside the 

development of methodology it is recognised that attention to study design  and  collection of 

more appropriate data  is necessary if questions about these complex structures are to be fully  

handled 

The estimation procedures suggested have been based on penalised quasi-likelihood. 

using the flexible macro facilities available within the software MlwiN. Alternative 

estimation procedures which currently have implementable software have been suggested. 

These are mostly based on a maximum likelihood approaches. At present the applicability of  

these are limited except for basic structures. The  root of this limitation  seems to be a 

computational one involving numerical  maximisation of complicated integrals. A good 

review of alternative theoretical methods has been given by McCulloch (1999). 



It is known that  the quasi-likelihood are not unbiased. However, accumulating 

evidence has indicated  that the  PQL2 estimation for the type of response used in the 

examples can provide reasonable estimates (Yang, 1997).  McCulloch (1999) is a little more 

sceptical but focuses in the main on binary responses. The methods of Kuk (1995)  using 

bootstrapping can be applied to  bias-adjust the PQL2 estimates. These are also 

implementable through MlwiN and have been tried in the hierarchical teaching group model 

of  Table 1. Bias adjustment proved minimal.. The bootstrap methods are computer intensive 

and cannot so far be routinely applied quickly for the more complex structures.  

.We have conducted some limited simulations using our data structure and a model  

using the fixed and random parameter estimates in  model with student effects ( column 4 of 

Table 1). We simulated ten data sets with multinomial variation at the entry level. From these 

data sets we fitted the models using  PQL2  with and without a multinomial parameter. Each 

fit takes about an hour on a Pentium II  450 Mz so the practical limitations of extensive 

exercises of this sort are limited  The fits showed reasonable estimation of fixed parameters. 

Across the data sets the model variances were underestimated by factors of order 15-25%  

when the extra multinomial parameter was constrained to have a multinomial value of unity, 

as it should be for the simulated sets. The effect on student and group variances were 

proportionate. When this parameter was unconstrained it was estimated around unity but the 

variances were proportionally underestimated but now by factors of between 2-9% only.. In 

the sparse structures in Table 2 of Wright (1997), although he does not explicitly mention it 

in the text, higher level variances are overestimated, but no information is offered for 

constrained multinomial fits. No general conclusion about directions of impact can appear to 

be made. Our limited evidence does, however, seem to support the argument that the extra-

multinomial parameter be left unconstrained.     

Clearly there is a need for further development of tractable general estimation 

procedures for the type of  flexible models discussed. The quasi-likelihood procedures are 

one such an approach and the biases appear not to be too serious on the limited evidence 

available.  Clearly though future research may  extend further  the knowledge of the statistical  

and computational  properties of these methods. At the moment they have the virtue of being 

flexibly applicable and now  implementable in widely available software.  As research 

develops these methods may be improved and adapted or completely new methods may 

arise.. A promising approach which adapts PQL2 for binary responses using data 

augmentation for a cross-classified structure is  given by  Clayton and Rasbash (1999).  By 

considering parallel models for crossed factors this improves considerably on computational 



efficiency. This approach also incorporates  the Bayesian approaches of Monte-Carlo Markov 

Chain methods (MCMC).  The latter approaches may have wider applicability for the sort of 

situation that has been considered  here,  as further advances are made.  They are currently 

being developed  as an alternative class of estimation approaches within MlwiN. One idea 

that is currently being researched for ordered category responses utilises the latent variable 

concept. At various stages of the iterative process ordered responses are replaced by 

simulated  responses of the underlying latent variable. This means that the complex structure 

models can be handled within the framework of linear continuous response models. There is 

no doubt that this is a lively area of current interest and a range of methods are being 

investigated, developed and evaluated. The future holds promise for the ultimate aim of very 

general and statistically and computationally efficient procedures which are readily 

accessible.. 
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