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Abstract

In aggregative games, each player’s payoff depends on her own actions and an aggregate of
the actions of all the players (for example, sum, product or some moment of the distribution of
actions). Many common games in industrial organization, political economy, public economics,
and macroeconomics can be cast as aggregative games. In most of these situations, the behavior
of the aggregate is of interest both directly and also indirectly because the comparative statics
of the actions of each player can be obtained as a function of the aggregate. In this paper, we
provide a general and tractable framework for comparative static results in aggregative games.
We focus on two classes of aggregative games: (1) aggregative of games with strategic substitutes
and (2) “nice” aggregative games, where payoff functions are continuous and concave in own
strategies. We provide simple sufficient conditions under which “positive shocks” to individual
players increase their own actions and have monotone effects on the aggregate. We show how
this framework can be applied to a variety of examples and how this enables more general and
stronger comparative static results than typically obtained in the literature.
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1 Introduction

In aggregative games, each player’s payoff depends on her own actions and some aggregate of

all players’ actions. For example, the Cournot model of oligopoly competition is an aggregative

game; each firm’s profits depend on its own quantity and total quantity supplied to the market.

More generally, the aggregate could be any mapping from the players’ action profile to a real

number.1 There is a large and growing literature on aggregative games (see e.g. Acemoglu and

Jensen (2010), Corchón (1994), Cornes and Hartley (2005), Dubey et al. (2006), Jensen (2010),

and Martimort and Stole (2009)). Several game-theoretic models applied in macroeconomics,

industrial organization, political economy, and other fields of economics can be cast as aggregative

games. These include the majority of the models of competition (Cournot and Bertrand with

or without product differentiation), models of (patent) races, models of contests and fighting,

models of public good provision, and models with aggregate demand externalities. In many

applied problems, the focus is naturally on how the aggregate (e.g., total supply to the market,

the price index, probability of innovation, total public good provision) responds to changes in the

environment. In addition, comparative statics of individual actions can often be obtained as a

function of the aggregate.2 In this paper, we provide a simple general framework for comparative

static analysis in aggregative games. Our approach is applicable to diverse environments that

can be cast as aggregative games and enables us to provide sufficient conditions for a rich set of

comparative static results. We present two sets of results. First, we focus on aggregative games

with strategic substitutes. In games with strategic substitutes, each player’s payoff function is

supermodular in her own strategy and exhibits decreasing differences in her own strategy and the

strategy vector of other players. For aggregative games with strategic substitutes, we establish

the following results:

1. Changes in parameters that only affect the aggregate (such as a shift in demand in the

Cournot game) always lead to an increase in the aggregate—in the sense that the smallest

and the largest elements of the set of equilibrium aggregates increase.

2. Entry of an additional player decreases the (appropriately-defined) aggregate of the existing

players.

3. A “positive” idiosyncratic shock, defined as a parameter change that increases the marginal

1We discuss games with multi-dimensional aggregates in Section 6.
2The fact that a game is aggregative does not imply that players ignore the impact of their strategies on

aggregates. When they do so, we say that the equilibrium is Walrasian Nash or that the play is Walrasian. Our
results are extended to Walrasian Nash equilibria in Section 8. Because in this case there are more more limited
“game-theoretic” interactions, the analysis is more straightforward.
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payoff of a single player, leads to an increase in that player’s strategy and a decrease in the

other players’ aggregate.

The comparative static results mentioned above are intuitive. But it is surprising that for

aggregative games, they hold at the same level of generality as the monotonicity results for

supermodular games (in particular, no quasi-concavity or convexity assumptions are needed).

Nevertheless, not all aggregative games exhibit strategic substitutes. The second set of re-

sults we present focus on “nice” aggregative games, which are games with payoff functions that

are concave (or pseudo-concave) in own strategies, and sufficiently smooth (specifically, twice

continuously differentiable).

We prove results that parallel and complement the ones mentioned above for nice aggregative

games under an additional assumption, which we refer to as local solvability. Under this assump-

tion, which ensures the local invertibility of the “backward reply” mapping described further

below, we establish a general monotonicity theorem similar in spirit to the monotonicity results

for supermodular games (Milgrom and Roberts (1990), Vives (1990)). This theorem predicts that

a positive shock to (one or more of) the players will lead to an increase in the smallest and largest

equilibrium values of the aggregate. We also prove that entry of an additional player increases

the aggregate and derive more extensive “individual comparative static” results.3

Verifying that an aggregative game satisfies the local solvability condition, or alternatively

that it is a game of strategic substitutes, is relatively straightforward in any given application.

Thus our results provide very easy-to-apply, yet powerful results for applied economics.4

An informal summary of our results from both aggregative games with strategic substitutes

and from nice aggregative games is that, under a variety of reasonable economic conditions,

comparative statics are “regular” (for example, a reduction marginal cost increases output and so

on). We next motivate our results and illustrate their scope using two examples. The first focuses

on a general class of contest games, which were introduced by Loury (1979) in the context of

patent races and then extensively used in the political economy literature starting with the work

of Dixit (1987) and Skaperdas (1992). The second is the standard Cournot model.

3Though intuitive, robust comparative static results of the form discussed here are generally not true unless the
local solvability condition is satisfied. In the Appendix, we provide an example of a simple aggregative game where
a positive shock decreases the equilibrium aggregate.

4 In Section 5 we illustrate this for a number of standard applications of game theory (contests, public good
provision, Cournot competition). The simplicity of our approach should be contrasted with the more standard
route to comparative statics results that is based on the implicit function theorem (IFT). The application of the
IFT in a game-theoretic setting typically requires substantial matrix algebraic computations. Complexity aside,
even the most ingenuous applications of the IFT would not yield the main results in this paper, which are global,
whereas the IFT uses and delivers local information.
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Example 1 Suppose that I players exert effort or invest in their research labs, guns or armies

in order to win a contest or fight. Let us denote the strategy of player i (corresponding to effort)

by si. Then player i’s payoff can be written as

πi (si, s−i) = Vi ·
hi (si)

R+H
(∑I

j=1 hj (sj)
) − ci (si) , (1)

where ci : Si → R+ denotes the cost of effort, h1, . . . , hI , and H are strictly increasing functions,

and R ≥ 0. This is an aggregative game, since as (1) makes clear, the payoff of player i de-

pends only on her own action, si, and an aggregate of the actions of all other players given by

H
(∑I

j=1 hj (sj)
)

.5 It can also be easily verified that this is neither a game of strategic comple-

ments nor strategic substitutes. In fact, some of the most interesting questions in this context

arise because the reduction in the costs of effort for some player i may either increase the effort of

a competing player i′ (when this player also increases her effort in order to keep up) or decrease

it (because the competitor “gives up”).

Our approach will enable us to obtain very sharp comparative static results for this class of

games, showing that a decline in the cost of effort for player i will always increase her effort, and

provide a precise threshold rule, determining whether each of the other players will respond by

increasing or decreasing their effort. While recent work, for example, Nti (1997), also presents

comparative static results for contest games. However, as explained in the text, our approach can

be applied more easily and leads to sharper and more general results (for example, in contrast to

Nti (1997), we do not restrict attention to symmetric games).

Example 2 The Cournot model of quantity competition, where I firms each set output si ∈
[0, s̄i], in order to maximize profits,

πi(s, t) = siP

 I∑
j=1

sj

− ci(si) (2)

is a classical example of an aggregative game. Here P is the inverse demand in this market and ci

is the cost function of firm i. As is well known, under mild conditions this is a game of strategic

substitutes and pure strategy equilibria exist even when profit/payoff functions are non-concave

and/or strategy sets are non-convex (Novshek (1985), Kukushkin (1994)). To the best of our

knowledge, there are, however, no existing comparative statics results that apply to the model at

this level of generality (or to the large number of games that share the same abstract features,

an example being a public good provision game with a normal private good as returned to in

5The precise definition of an aggregate and aggregative games are given in Section 2, where we also show more
formally that contests are aggregative games.
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Section 2). Our approach applies directly to the Cournot model and provides a complete set of

comparative statics results.

Section 5 discusses the application of our general results to these and various other economic

models, highlighting both the applicability of the methods we propose and several new results

and insights.6

At this point, it is worth emphasizing that there is no guarantee in general that intuitive

and unambiguous comparative static results should hold in aggregative games. In the Appendix

(Section 10.1) we provide a simple example that illustrates how counterintuitive, “perverse,”

results can arise in simple aggregative games. In this light, a major contribution of our paper is

to provide minimal conditions to ensure that such perverse results do not arise. In particular,

our first set of theorems shows that such perverse results can not arise in aggregative games with

strategic substitutes, and our second set of results establishes that they can be ruled out in nice

aggregative games by the local solvability condition mentioned above. The reason we can derive

strong unambiguous comparative static results in the two examples discussed above is that in

general contests the local solvability condition is satisfied naturally, while the Cournot model is

a game of strategic substitutes under natural conditions (and it also satisfies the local solvability

conditions under very natural conditions).

In addition to providing minimal conditions for general comparative static results and signif-

icantly weakening the conditions that are available in the literature (for example, for models of

patent races, contests, and public good provision), our approach is also useful because it highlights

the common features that ensure “regular” comparative static results. These results are made

possible by the alternative approach we use for deriving comparative static results (the more fa-

miliar approaches in the literature rely on the implicit function theorem already discussed above,

or lattice-theoretic tools in the case of supermodular games). Our approach can be explained as

follows. Consider a general comparative static problem written as

A · ds = −b·dt,

where dt ∈ R is the change in some exogenous variable, ds ∈ RM designates the induced change

in the endogenous variables, A is an M × M matrix and b is an M -dimensional vector. An

important question is to specify the conditions under which we can sign ds “robustly”—meaning

without specifying numerical values for the elements of the matrix A and vector b. Cast in

this generality, the conclusion is somewhat depressing: to obtain such results it is necessary to

6Another leading example is games in which players make voluntary (private) contributions to the provision of
a public good (Section 5.2).
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ascertain the sign of the elements of A−1. But even when A is symmetric negative definite, we

can do this only when one of the following two additional (and stringent) conditions hold: (i)

when A is a Metzler matrix, that is, it has non-negative off-diagonal elements, or (ii) when A is a

Morishima matrix, that is, it becomes a Metzler matrix when we reverse the sign of one or more

variables.7 The only general case where these conditions are satisfied is provided by supermodular

games. Since many games that arise in applications are not supermodular, much of the applied

literature imposes additional parametric restrictions in the context of specific games to derive

comparative statics results. The discussion above highlights that many of these conclusions may

not be robust and in general there are no systematic investigations of when the specific conclusions

enjoy such robustness.

Our alternative approach is not to impose parametric restrictions, but to exploit the aggrega-

tive nature of the games in question and note that what is often of economic interest is not the

entire vector ds, but the behavior of the appropriate aggregate (such as the sum of this vector’s

entries), or just one of its coordinates (the latter corresponds to deriving robust results for a single

player as opposed to all players). With this perspective, robust and general comparative static

results can be obtained under considerably weaker conditions. Our contribution is to suggest this

perspective and show how it can be made operational.

Our paper is related to a number of different strands in the literature. Comparative static

results in most games are obtained using the implicit function theorem. The main exception is

for supermodular games (games with strategic complements). Topkis (1978, 1979), Milgrom and

Roberts (1990) and Vives (1990) provide a framework for deriving comparative static results in

such games. These methods do not extend beyond supermodular games.

More closely related to our work, and in many ways its precursor, is Corchón (1994). Corchón

(1994) provides comparative static results for aggregative games with strategic substitutes, but

only under a fairly restrictive additional condition, which, among other things, implies uniqueness

of equilibrium. In contrast, we provide general comparative static results for aggregative games

with strategic substitutes without imposing any additional assumptions. We also provide parallel

but stronger results for nice aggregative games without strategic substitutes. Another similarity

between our paper and Corchón (1994) is that both make use of the so-called backward reply

correspondence of Selten (1970). In an aggregative game, the backward reply correspondence gives

the (best response) strategies of players that are compatible with a given value of the aggregate.8

7See Bassett et al (1968) and Hale et al (1999).
8The first systematic study of aggregative games (German: aggregierbaren Spiele) can be found in Selten (1970).

After defining aggregative games, Selten proceeds to define what he calls the Einpassungsfunktion (Selten (1970),
p. 154), that is, the backward reply function of an individual player. As Selten proves, the backward reply
correspondence is single-valued (a function) provided that the player’s best-response function has slope greater
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In a seminal paper, Novshek (1985) used this correspondence to give the first general proof of the

existence of pure-strategy equilibria in the Cournot model without assuming quasi-concavity of

payoff functions (see also Kukushkin (1994)). Novshek’s result has since been strengthened and

generalized to a larger class of aggregative games (e.g., Dubey et al. (2006) and Jensen (2010))

and our results on games with strategic substitutes utilize Novshek (1985)’s construction in the

proofs.9 Our results on “nice” aggregative games blend the backward reply approach with the

equilibrium comparison results reported in Milgrom and Roberts (1994) and Villas-Boas (1997).10

The rest of the paper is organized as follows. Section 2 provides basic definitions. Section 3

provides the general comparative static results for aggregative games with strategic substitutes.

Section 4 generalizes and strengthens these results for “nice” aggregative games, which feature

payoffs that are continuous and (pseudo-)concave in own strategies. Section 5 shows how the

results from Sections 3 and 4 can be used to obtain general characterization results in various

applications, including Examples 1 and 2 discussed above. Section 6 discusses how these results

can be extended to games with multidimensional aggregates and Section 7 provides additional

generalizations of the results presented in Section 4. Section 8 briefly discusses Walrasian Nash

equilibria (cf. footnote 2). Section 9 concludes and the Appendix contains the examples and

proofs omitted from the text.

2 Basic Definitions

The section introduces the basic definition of an aggregative game used throughout this paper.

In this section we also introduce games with strategic substitutes which we return to in the next

Section. The concept of a “nice” game is not used until Section 4, hence we postpone its definition

until then.

Let Γ = (πi, Si, T )i∈I denote a noncooperative game with a finite set of players I = {1, . . . , I},
and finite-dimensional strategy sets Si ⊆ RN . In addition, T ⊆ RM is a set of exogenous pa-

rameters with typical element t ∈ T . We will focus on how the set of equilibria of Γ changes in

response to changes in t.

than −1. The assumptions imposed by Corchón (1994) imply that the slope of players’ best-response functions lie
strictly between −1 and 0, so that the backward reply correspondence is both single-valued and decreasing. Neither
is necessarily the case in many common games and neither is imposed in this paper.

9Novshek’s explicit characterization of equilibria is similar to the characterization of equilibrium in supermodular
games that uses the fixed point theorem of Tarski (1955). Both of these enable the explicit study of the behavior
of “largest” and “smallest” fixed points in response to parameter changes. Tarski’s result is used, for example, in
the proof of Theorem 6 in Milgrom and Roberts (1990).

10More specifically, our proofs repeatedly use that the smallest and largest fixed points of a continuous function
from a subset of real numbers into itself will increase when the curve is “shifted up” (see Figure 1 of Villas-Boas
(1997) or Figure 2 of Milgrom and Roberts (1994)).
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Throughout the rest of the paper we assume that the joint strategy set

S ≡
I∏
j=1

Sj

is compact (in the usual topology) and the payoff functions

πi : S × T → R

are upper semi-continuous for each i ∈ I. Let

Ri(s−i, t) ≡ arg max
si∈Si

πi(si, s−i, t)

denote the best response correspondence (with the standard notation s−i ∈ S−i ≡
∏
j 6=i Sj). Given

the compactness and upper semi-continuity assumptions, the correspondence Ri is non-empty-

and compact-valued, and upper hemi-continuous.

We next define the notion of an aggregator.

Definition 1 (Aggregator) A mapping g : S → RK (with K ≤ N) is an aggregator if it is

continuous, increasing and separable across the players, i.e., if there exists a strictly increasing

function H : RK → RK and increasing functions hi : Si → RK (for each i ∈ I) such that:

g(s) = H

 I∑
j=1

hj(sj)

 . (3)

Throughout this paper K is referred to as the dimension of the aggregate. For most of the

analysis (in particular, until Section 6), we impose K = 1, but throughout there are no restrictions

on N . In particular, except Corollary 3 in Section 7, none of our results require N = 1 (one-

dimensional strategy sets). The requirement that g is increasing in s ensures that both g and

−g cannot be aggregators for the same game. Naturally, since we can change the order on

individual strategies (thus working with −si instead of si for some i), this requirement is not very

restrictive. Common examples, such as the sum of strategies g(s) =
∑I

j=1 sj , satisfy the definition

(with hi(si) = si and H(z) = z). Two other simple examples are g(s) = (α1s
β
1 + . . .+ αNs

β
N )1/β,

S ⊆ RN , and g(s) =
∏I
j=1 s

αj
j , S ⊆ RN++ where αj > 0 (for each j) and β > 0, which are,

respectively, a CES function and a Cobb-Douglas function.11

Remark 1 (Differentiability and Aggregation) In the case of one-dimensional strategy sets,

Definition 1 is the standard definition of separability when g is strictly increasing (see, e.g.,

11In the first case hi(si) = αis
β
i (with si > 0) and H(z) = z1/β . In the second hi(si) = αi log(si) and H(z) =

exp(z) (again with si > 0).
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Gorman (1968)). It can be easily established that when g is twice continuously differentiable,

N = K = 1, and I ≥ 3, it is separable if and only if the “marginal rate of transformation”

between any two players i and j is independent of the other players’ actions; that is,

Dsig(s)

Dsjg(s)
= hi,j(si, sj) for all s ∈ S (4)

where hi,j : Si×Sj → R is a function of si and sj , but not of any sq with q 6= i, j. More generally,

when g is twice continuously differentiable, strictly increasing, and I ≥ 3, it may be verified that

it satisfies Definition 5 if and only if there exist increasing functions fi : Si×RK → RN such that

for each player i ∈ I:

Dsig(s) = fi(si, g(s)) for all s ∈ S. (5)

When g is increasing (and not necessarily strictly increasing), as is the case in Definition 1,

(5) is still implied provided that g is also twice continuously differentiable. This observation will

play an important role in Section 4. Clearly, equation (5) also gives an alternative and often very

convenient way of verifying that a strictly increasing function g is an aggregator.

Definition 2 (Aggregative Game) The game Γ = (πi, Si, T )i∈I is aggregative if there exists

an aggregator g : S → RK and a reduced payoff function

Πi : Si × RK × T → R

for each player i such that

Πi (si, g (s) , t) ≡ πi (si, s−i, t) . (6)

Example 1 (Continued) Recall the payoff functions (1) in a contest. Since both H and the

functions hj are increasing, g(s) = H(
∑

i hi(si)) is an aggregator as specified in Definition 1. The

game is then aggregative because (6) holds with Πi (si, g (s)) ≡ Vi · hi (si) / (R+ g (s)) − ci (si)

(where the exogenous variables t are suppressed to simplify the notation).

Evidently, an aggregative game is fully summarized by the tuple ((Πi, Si)i∈I , g, T ). Moreover,

in an aggregative game, a player i’s best-reply correspondence Ri = Ri(s−i) can always be ex-

pressed as Ri(s−i, t) = R̃i(
∑

j 6=i hj(sj), t), where R̃i is a “reduced” best-reply correspondence. In

particular, from (3), player i’s payoff can be written as a function of the aggregate of the other

players,
∑

j 6=i hj(sj), and i’s own strategy si ∈ Si, by noting that
∑

j 6=i hj(sj) = H−1(Q)−hi(si).
Given the aggregate Q = g(s), this last observation also allows us to define player i’s backward

reply correspondence as,

Bi(Q, t) ≡ {si ∈ Si : si ∈ R̃i(H−1(Q)− hi(si), t)}, (7)
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which is the set strategies for player i that are best response to the aggregate Q (given parameters

t). This backward reply correspondence, which generalizes the concept introduced in Selten

(1970), was already motivated in the Introduction, and will play an important role throughout

this paper, especially in the proofs.

Another key concept we will use is games with strategic substitutes.The payoff function πi(si, s−i, t)

exhibits decreasing differences in si and s−i if for all s′i > si, the “difference” πi(s
′
i, s−i, t) −

πi(si, s−i, t) is a decreasing function in each of the coordinates of s−i ∈ S−i ⊆ RN(I−1) (cf.

Topkis (1978)). When πi is twice differentiable, this will hold if and only if D2
sisjπi(si, s−i, t)

is a non-positive matrix for all j 6= i. The payoff function πi(si, s−i, t) is supermodular in si if

πi(si ∨ s̃i, s−i, t) + πi(si ∧ s̃i, s−i, t) ≥ πi(si, s−i, t) + πi(s̃i, s−i, t) for all si, s̃i ∈ Si (and s−i ∈ S−i,
t ∈ T ). Here si ∨ s̃i (si ∧ s̃i) denotes the coordinatewise maximum (minimum) of the vectors si

and s̃i. Naturally, this definition requires that si ∨ s̃i and si ∧ s̃i are contained in Si whenever

si, s̃i ∈ Si, i.e., Si must be a lattice. When strategy sets are one-dimensional, supermodularity as

well as the lattice-structure of strategy sets are automatically satisfied, so only decreasing differ-

ences remains to be checked. For multidimensional strategy sets, supermodularity holds for twice

differentiable payoff functions if and only if D2
sni s

m
i
πi(si, s−i, t) ≥ 0 for all m 6= n (where sni and

smi denote the nth and mth components of of the strategy vector si of player i).

Definition 3 (Strategic Substitutes) The game Γ = (πi, Si)i∈I is a game with strategic sub-

stitutes if strategy sets are lattices and each player’s payoff function πi(si, s−i, t) is supermodular

in si and exhibits decreasing differences in si and s−i.

Equivalently, we will also say that a game has (or features) strategic substitutes. A game that

is both aggregative and has strategic substitutes, is an aggregative game with strategic substitutes.

Notice that decreasing differences usually is straightforward to verify in aggregative games. In

fact, when the aggregator g is a symmetric function there will only be one condition to check for

each player. For instance, consider an aggregative game with linear aggregator g(s) =
∑I

j=1 sj

and one-dimensional strategy sets, so that Πi

(
si,
∑I

j=1 sj , t
)
≡ πi(si, s−i, t). If πi is sufficiently

smooth, then decreasing differences is equivalent to nonpositive cross-partials, i.e., D2
sisjπi =

D2
12Πi + D2

22Πi ≤ 0. This immediately implies that if decreasing differences holds for some

opponent j, it must hold for all opponents.

Example 2 (Continued) The simplest example of a game with strategic substitutes is the

Cournot model πi(s) = siP (
∑I

j=1 sj)−ci(si), with a decreasing, concave inverse demand function

P (this statement is valid regardless of the cost function ci).
12

12 Assuming differentiability to simplify calculations, the condition for strategic substitutes is D2
sisjπi(s) =

9



Example 3 Another interesting (perhaps less straightforward) example of aggregate of games is

the model of private contribution to public good provision introduced in Bergstrom et al. (1986).

We discuss this model in greater detail in Section 5.2, and show that it has strategic substitutes

if and only if the private good is normal.

Remark 2 (Strategic Substitutes and Decreasing Differences in s and Q) Unless play-

ers take Q as given (as in Walrasian Nash equilibria discussed in Section 8), there is no exact

relationship between strategic substitutes and the condition that Πi(si, Q) exhibits decreasing

differences in si and Q (the latter may be thought of as “strategic substitutes in si and the aggre-

gate Q”). For example, suppose that N = 1, g(s) =
∑I

j=1 sj , and assume that payoff functions

are twice differentiable. Then the requirement for strategic substitutes is D2
sisqΠi(si,

∑I
j=1 sj) =

D2
12Πi(si, Q) + D2

22Πi(si, Q) ≤ 0 where Q =
∑I

j=1 sj . Decreasing differences in si and Q, on the

other hand, requires that D2
12Πi(si, Q) ≤ 0. Clearly neither condition implies the other. Provided

that D2
22Πi(si, Q) ≤ 0, our strategic substitutes condition is weaker, and in fact, we can have

D2
12Πi(si, Q) > 0 in a game with strategic substitutes.

Finally, we define an equilibrium in the standard fashion.

Definition 4 (Equilibrium) Let ((Πi, Si)i∈I , g, T ) be an aggregative game. Then s∗(t) =

(s∗1(t), . . . , s
∗
I(t)) is a (pure-strategy Nash) equilibrium if for each player i ∈ I,

s∗i (t) ∈ arg max
si∈Si

Πi(si, g(si, s
∗
−i), t).

3 Aggregative Games with Strategic Substitutes

We first present comparative static results for aggregative games with strategic substitutes (de-

fined in Section 2).13 Strategy sets are allowed to be multi-dimensional for this section’s results,

but we will assume that the aggregate is one-dimensional (so in terms of Definition 1, K = 1

while N is arbitrary). Only the very weak general conditions of Section 2 are needed (upper

semi-continuity of payoff functions and compactness of strategy sets). In particular, it is not

assumed that payoff functions are quasi-concave or that strategy sets are convex. The main result

P ′(Q) + siP
′′(Q) ≤ 0. Clearly this condition holds when P is decreasing and concave.

13Note that instead of Definition 3 (supermodularity and decreasing differences), we could equivalently work with
quasi-supermodularity and the dual single-crossing property of Milgrom and Shannon (1994). In fact it is easy to
verify from our proofs, that our results will be valid under any set of assumptions that ensure that best-response
correspondences are decreasing in the strong set order (e.g., Topkis (1998)). Quasi-supermodularity and dual single-
crossing are ordinal conditions and so hold independently of any strictly increasing transformations of the payoff
functions. In particular, a payoff function πi(si, s−i, t) satisfies the dual single-crossing property in si and s−i if for
all s′i > si and s′−i < s−i, (i) πi(s

′
i, s−i) > πi(si, s−i) ⇒ πi(s

′
i, s
′
−i) > πi(si, s

′
−i), and (ii) πi(s

′
i, s−i) ≥ πi(si, s−i)

⇒ πi(s
′
i, s
′
−i) ≥ πi(si, s′−i).
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of this section is that “regular” comparative statics can be obtained in aggregative games with

strategic substitutes without any additional assumptions. Concrete applications of the results

can be found in Section 5, in particular that section contains an application to a game where

strategy sets are multidimensional illustrating the results’ full scope. We begin by noting that an

equilibrium will always exist - something which is actually not trivial since no quasi-concavity or

convexity assumptions are in force:

Theorem 1 (Existence) Let Γ be an aggregative game with strategic substitutes. Then Γ has a

Nash equilibrium (i.e., it has at least one pure-strategy Nash equilibrium).

Proof. See Jensen (2010).

Pure-strategy equilibria are not necessarily unique.14 In general there will be a (compact) set

E(t) ⊆ S of equilibria for each parameter t ∈ T . When there are multiple equilibria, we focus

on the equilibria with the smallest and largest aggregates. The smallest and largest equilibrium

aggregates are defined as

Q∗(t) ≡ min
s∈E(t)

g(s), and (8)

Q∗(t) ≡ max
s∈E(t)

g(s). (9)

The following theorem establishes certain important properties of the smallest and largest

aggregates, which will be used repeatedly in what follows.

Theorem 2 (Smallest and Largest Aggregates) For all t ∈ T , Q∗(t) and Q∗(t) are well

defined (i.e., smallest and largest equilibrium aggregates exist). Furthermore the function Q∗ :

T → R is lower semi-continuous, the function Q∗ : T → R is upper semi-continuous, and thus

when there is a unique equilibrium aggregate for all t, Q∗(t) = Q∗(t) is continuous on T .

Proof. See Section 10.2.

Our first substantive result, presented next, addresses the situation where an exogenous pa-

rameter t ∈ T ⊆ R “hits the aggregator,” meaning that it only affects the function g. This result

is both of substantive interest and also enables us to prove the subsequent characterization results

(in Theorems 4 and 5). More formally, we refer to parameter t as a shock to the aggregator (or

aggregate) when (6) can be strengthened to

Πi(si, G(g (s) , t)) ≡ πi(s, t) all i,

14Uniqueness requires fairly strong additional assumptions. See, for example, Vives (2000), Theorem 2.8, for a
result on uniqueness in aggregative games with strategic substitutes and with linear aggregators.
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where g : S → R designates the aggregator, and G(g(s), t) is continuous, increasing, and separable

in s and t (see Definition 1 for the relevant definition of separability). The simplest case would be

when the aggregator is linear, so that Πi

(
si, t+

∑I
j=1 sj

)
≡ πi(s, t) with G(g (s) , t) = t+

∑I
j=1 sj

and g (s) =
∑I

j=1 sj . Examples of shocks to the aggregator include a shift in the inverse demand

function in the Cournot model (Section 5.3), a change in the discount factor R in a contest/patent

race (Section 5.1), or a change in the baseline provision level of the public good s̄ in the public

good provision model (Section 5.2).

Notice that when t is a shock to the aggregator and t is increased, the marginal payoff of

each player decreases (provided that marginal payoffs are defined).15 Hence we would intuitively

expect an increasing shock to the aggregator to lead to a decrease in the aggregate. The next

theorem shows that in an aggregative game with strategic substitutes, this is indeed the case.

Theorem 3 (Shocks to the Aggregator) Consider a shock t ∈ T ⊆ RM to the aggregator

in an aggregative game with strategic substitutes. Then an increase in t leads to a decrease in

the smallest and largest equilibrium aggregates, i.e., the functions Q∗(t) and Q∗(t) are (globally)

decreasing in t.

Proof. See Section 10.3.

Though the result in Theorem 3 is intuitive, Example 10.1 (this example was briefly discussed

in the Introduction), shows that such results need not hold in simple games, even in simple ag-

gregative games. In Section 5.4 we present an example of an aggregative game with strategic

substitutes where a shock (that does not hit the aggregate!) leads to a counter-intuitive equilib-

rium change in the aggregate.

Also notice that since no concavity or convexity assumptions are required, the conclusion of

Theorem 3 could have never been reached by use of the implicit function theorem. Similarly, ex-

isting results on supermodular games (Topkis (1978), Milgrom and Roberts (1990), Vives (1990))

are obviously of no use when we are dealing with the case of strategic substitutes. In Section 5

we give several illustrations of the usefulness of Theorem 3.

The proof of the theorem exploits the constructive proof of existence of Novshek (1985) (suit-

ably generalized to fit the present framework). This approach provides an explicit description of

the largest (and smallest) equilibrium aggregate, allowing us to determine the direction of any

change resulting from a shock to the aggregate. We should also add that this approach to com-

parative statics results is, to the best of our knowledge, new. A major advantage of this approach

15By strategic substitutes, agent i’s marginal payoff must be decreasing in opponents’ strategies and hence, since
G is increasing in s and t, an increase in t must lead to a decrease in marginal payoff.

12



is that it provides global results that are valid independently of any differentiability and convexity

assumptions.

Theorem 3 also allows us to derive a general result on the effect of “entry”, i.e., enables a

comparison of equilibria when an extra player is added to the game. The entrant, player I + 1

when the original game has I players, is (by definition) assigned the “inaction” strategy minSI+1

before entry (e.g., when SI+1 = [0, s̄], inaction corresponds to “zero”, sI+1 = 0; for instance,

zero production or zero contribution to the provision of a public good). Define the aggregator as

g(s) = g(s1, . . . , sI , sI+1). Then we have a well-defined aggregative game both before and after

entry; before entry there are I players and sI+1 is just a constant, after entry this is an I + 1

player aggregative game in the usual sense. As elsewhere, here increasing means “either strictly

increasing or constant”. Thus the entrant may choose “inaction” (zero production in the Cournot

model, say) and thus the equilibrium after entry may remain the same.16

Theorem 4 (Entry) In an aggregative game with strategic substitutes, entry of an additional

player will lead to a decrease in the smallest and largest aggregates of the existing players in

equilibrium (and a strict decrease if the aggregator g is strictly increasing and the entrant does

not choose inaction after entry).

Proof. This result follows from Theorem 3 by observing that the entry of an additional player

corresponds to an increasing shock to the aggregate of the existing players. In particular, let

g(s1, . . . , sI , sI+1) be the aggregator where I+1 is the entrant. Since g is separable, we necessarily

have g(s1, . . . , sI , sI+1) = H(g̃(s1, . . . , sI), sI+1) where H and g̃ satisfy the above requirements for

a shock to the aggregate (see, for example, Vind and Grodal (2003)).

Note that Theorem 4 only shows that the aggregates of the existing players decrease.17 It is

intuitive to expect that the aggregate inclusive of the entrant should increase. But this is not

generally true without further assumptions: It may happen that the entrant “crowds out” the

existing players’ strategies so forcibly that his own positive addition will not make up for the

short-fall (see Remark 9 in the proof of Theorem 3 for a detailed description of when entry will

decrease the aggregate and when it will not). In the next section, we will present additional

assumptions under which entry can be guaranteed to increase the overall aggregate (see Theorem

7).

16To strengthen the results to “strictly increasing,” one could impose additional boundary conditions.
17This is the reason why we do not explicitly write Q∗(t) and Q∗(t). Instead, we could have defined Q̃∗(t) ≡

max(s1,...,sI )∈E(t) g̃(s1, . . . , sI) and Q̃∗(t) ≡ min(s1,...,sI )∈E(t) g̃(s1, . . . , sI), and the statement would be for Q̃∗(t)

and Q̃∗(t). But this additional notation is not necessary for the statement or the proof of the theorem.
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The next theorem presents what is perhaps our most powerful results for games with strategic

substitutes. These can be viewed as strategic substitutes’ counterparts to the monotonicity results

that are well-known for supermodular games (e.g., Milgrom and Roberts (1990), Vives (1990)).

One difference, however, is that with strategic substitutes, the results apply only when shocks are

idiosyncratic, i.e., to shocks ti that affect only a single player, i ∈ I. More formally, a change in

ti is an idiosyncratic shock to player i if payoff functions can be written as

πi(s, ti) ≡ Πi(si, g(s), ti), and

πj(s, ti) ≡ Πj(sj , g(s)) for all j 6= i.

Let us also introduce the notion of a positive shock.

Definition 5 (Positive Shock) Consider the payoff function πi = πi(si, s−i, ti). Then an in-

crease in ti is a positive shock if πi exhibits increasing differences in si and t.

It is straightforward to verify that Definition 5 gives the correct notion of “positive shock”;

πi exhibits increasing differences if only if player i’s “marginal payoff”, πi(s
′
i, s−i, t)− πi(si, s−i, t)

for s′i > si, is increasing in t. Moreover, as is well known, when πi is sufficiently smooth, it

will exhibit increasing differences in si and t if and only if the cross-partial is nonnegative, i.e.,

D2
sitπ ≥ 0 for all s and t. The single-crossing property may replace increasing differences in

the previous definition without changing any of our results. We also define smallest and largest

equilibrium strategies for player i analogously to the smallest and largest equilibrium aggregates.

Theorem 5 (Idiosyncratic Shocks) Let ti be a positive idiosyncratic shock to player i. Then

an increase in ti leads to an increase in the smallest and largest equilibrium strategies for player

i, and to a decrease in the associated aggregates of the remaining players (which are, respectively,

the largest and smallest such aggregates).

Proof. See Section 10.4.

A simple corollary to Theorem 5 also characterizes the effects of a positive shock on payoffs.

Corollary 1 (Payoff Effects) Assume in addition to the conditions of Theorem 5 that all payoff

functions are decreasing [respectively, increasing] in opponents’ strategies and that player i’s payoff

function is increasing [respectively, decreasing] in the idiosyncratic shock ti. Then an increase in

ti increases [respectively, decreases] player i’s payoff in equilibrium and decreases [respectively,

increases] the payoff of at least one other player.
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Proof. For player i, πi(s
′
i, g(s′), t′) ≤ πi(s

′
i, g(s′i, s

′′
−i, t

′′) ≤ πi(s
′′
i , g(s′′), t′′). Since the strategy of

some player j (for j 6= i) decreases, we must have
∑

k 6=j hk(s
′
k) ≤

∑
k 6=j hk(s

′′
k). Consequently,

πj(s
′′
j , g(s′′)) ≤ πj(s′′j , g(s′′j , s

′
−j)) ≤ πj(s′j , g(s′)).

4 Nice Aggregative Games

We now extend the framework of the previous section to aggregative games without strategic

substitutes. For this purpose, we focus on “nice” games where payoff functions are differentiable

and concave (or pseudo-concave) in own strategies.18 As in the previous section, we focus on games

where the aggregate is one-dimensional, hence we can speak of and study the smallest and largest

equilibrium aggregates characterized as a function of the exogenous parameters in Theorem 2.

Our main result (Theorem 6) establishes that in a nice aggregative game, the largest and smallest

equilibrium aggregates increase with positive shocks whenever the local solvability condition holds

(Definition 7 below). An application to contests can be found in Section 5.1 (contests are neither

games of strategic substitutes or strategic complements). Although we use first-order conditions

in our analysis, the results in this section belong to the class of global comparative statics theorems

alongside the results of the previous section and parallel results for supermodular games (e.g.,

Milgrom and Roberts (1990), Vives (1990)). In particular, the results could never be reached

by a standard application of the implicit function theorem since the implicit function theorem

could never predict anything but the continuous dependence of endogenous variables on exogenous

ones.19

The following definition introduces the notion of “nice” aggregative games formally. When

strategy sets are one-dimensional (N = 1), the boundary condition featured in the definition can

be dispensed with if the local solvability condition is strengthened (Definition 8). As explained

in Remark 4, the boundary condition is implied by standard Inada-type boundary conditions

(whether or not N = 1).

Definition 6 (Nice Aggregative Games) An aggregative game Γ is said to be a nice aggrega-

tive game if the aggregator g is twice continuously differentiable, each strategy set is compact and

convex, and every payoff function πi is twice continuously differentiable, and pseudo-concave in

18Weinstein and Yildiz (2008) use a similar definition of a “nice game,” except that they also impose one-
dimensional strategies.

19To be a bit more specific, a global comparative statics result applies whether or not changes in parameters are
“small”, and it applies equally if the equilibrium aggregate (and consequently the associated strategies) changes
discontinuously with a continuous change in parameters - something which to be sure, may easily happen under
our general conditions. A third and perhaps less obvious aspect of our results is that these, as the results in the
previous section, yield statements about the largest and smallest equilibrium aggregates. So there is an element
of “equilibrium selection” working to our advantage in the background. The implicit function theorem will “miss”
any such global information making it in effect useless for the present purpose.
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the player’s own strategies. Finally, when si ∈ ∂Si (with ∂Si denoting the boundary of the strategy

set Si) and (v − si)TDsiπi(s, t) ≤ 0 for all v ∈ Si, then Dsiπi(s, t) = 0. That is, the first-order

conditions Dsiπi(s, t) = 0 are required to hold whenever a boundary strategy for player i is a

(local) best response.

Remark 3 (Pseudo-concavity) Recall that a differentiable function πi is pseudo-concave

(Mangasarian (1965)) in si if for all si, s
′
i ∈ Si:

(s′i − si)TDsiπi(si, s−i, t) ≤ 0 ⇒ πi(s
′
i, s−i, t) ≤ πi(si, s−i, t).

Naturally, any concave function is pseudo-concave. Pseudo-concavity implies that the first-order

conditions Dsiπi(s, t) = 0 are sufficient for si to maximize πi given s−i and t. That first-order

conditions are sufficient for a maximum is what we use in the proofs. Pseudo-concavity is not a

necessary condition for this to hold. For example, if N = 1 and Dsiπi(s, t) = 0⇒ D2
sisiπi(s, t) < 0,

it is easy to see that the first-order condition will be sufficient for a maximum (and in fact, that

the maximum will be unique). Quasi-concavity (or even strict quasi-concavity) does not imply

the sufficiency of first-order conditions for a maximum in general.

Remark 4 (Inada-Type Boundary Conditions) Note also that the boundary condition in

Definition 6 does not rule out best responses on the boundary of a player’s strategy set, ∂Si.

Instead, it simply requires first-order conditions to be satisfied whenever a local best response

is on the boundary. Consequently, this boundary condition is weaker than the standard “Inada-

type” conditions ensuring that best responses always lie in the interior of strategy sets (since when

best responses never lie on the boundary, first-order conditions vacuously hold for best responses

on the boundary).20

As is well-known, the concavity or pseudo-concavity conditions ensure that best response

correspondences are convex-valued (they are also upper hemi-continuous as mentioned at the

beginning of Section 2). The existence of a pure-strategy Nash equilibrium therefore follows by

Kakutani’s fixed point theorem.21 None of the assumptions in this section guarantee uniqueness,

20However, all boundary conditions cannot be dispensed with. To see this, consider an N -dimensional game,
N > 1 (with each player having N -dimensional strategy sets) without any interior best responses. The boundary
of this N -dimensional game can then be mapped bijectively into an N − 1-dimensional game. But since first-order
conditions never have to hold in the N -dimensional game, the local solvability condition below (Definition 7) would
never have to hold. In effect, the N − 1-dimensional “reduction” is therefore unrestricted and consequently, no
general results can be derived for such a game.

21Without convex best response correspondences, a Nash equilibrium may fail to exist in an aggregative game
(unless the game also features strategic substitutes or complements). See Jensen (2010), Example 5 for an example
of an aggregative game where a pure-strategy Nash equilibrium fails to exist even though strategy sets are one-
dimensional, convex, and there are only two players.
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however. We therefore deal with the possible multiplicity of equilibria as in the previous section

and study the behavior of the smallest and largest equilibrium aggregates, Q∗(t) and Q∗(t).

Theorem 2 from the previous section still applies so the smallest and largest equilibrium aggregates

exist and are, respectively, lower and upper semi-continuous, in t.

We next introduce the local solvability condition, which will play a central role in our anal-

ysis in this section. Let us simplify notation by defining D1Πi(si, Q, t) ≡ DsiΠi(si, Q, t) and

D2Πi(si, Q, t) ≡ DQΠi(si, Q, t). Using the fact that g is twice continuously differentiable, the

marginal payoff for player i can then be expressed as (here fi(si, g(s)) = Dsig(s), cf. Remark 1):

Dsiπi(s, t) = D1Πi(si, g(s), t) +D2Πi(si, g(s), t)fi(si, g(s)). (10)

Equation (10) shows us that in an aggregative game, a player’s marginal payoff can always be

written as a function of the player’s own strategy si and the aggregate g(s). To make this feature

of an aggregative game operational, define a function Ψi : Si × R× T → RN by:

Ψi(si, Q, t) ≡ D1Πi(si, Q, t) +D2Πi(si, Q, t)fi(si, Q). (11)

Note that this function contains the same information as (10), though it also enables us to

separate the direct and indirect effects of a change in si on the player’s marginal payoff: the

direct effect corresponds to a change in Ψi holding Q constant while the indirect effect captures

the marginal payoff effect of an isolated change in the aggregate. Differentiating Ψi with respect

to si yields an N × N matrix DsiΨi(si, Q, t) ∈ RN×N which precisely measures the mentioned

direct marginal payoff effect. The determinant of this matrix is denoted by |DsiΨi(si, Q, t)| ∈ R.

If strategy sets are one-dimensional we simply have |DsiΨi(si, Q, t)| = DsiΨi(si, Q, t) ∈ R. We

are now ready to define the local solvability condition and discuss its intuitive meaning.

Definition 7 (Local Solvability) Player i ∈ I is said to satisfy the local solvability condition

if |DsiΨi(si, Q, t)| 6= 0 whenever Ψi(si, Q, t) = 0 (for si ∈ Si, Q ∈ {g(s) : s ∈ S}).

As mentioned above, the following stronger version of local solvability will allow us to dispense

with any boundary conditions if strategy sets are one-dimensional.

Definition 8 (Uniform Local Solvability) When Si ⊆ R, player i ∈ I is said to satisfy the

uniform local solvability condition if DsiΨi(si, Q, t) < 0 whenever Ψi(si, Q, t) = 0 (for si ∈ Si,
Q ∈ {g(s) : s ∈ S}).

To interpret these conditions, notice first that if the player actually takes the aggregate as

given (meaning that she does not take her direct effect on the aggregate g(s) into account when
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maximizing payoff), uniform local solvability is nothing but strict concavity of the payoff function

at any point of maximum (clearly Ψi(si, Q, t) = 0 is the same as saying that the first-order

conditions hold with equality given si and Q). Indeed, when the player does not take her influence

on the aggregate into account, the direct effect as measured by DsiΨi will simply equal the player’s

marginal payoff. One way to think of local solvability is thus as a kind of “compensated strict

concavity” (or better, “compensated strict-second order conditions”), the compensation being

of course with respect to the indirect effect of the aggregate which is held fixed when Ψi is

differentiated with respect to si. Obviously, such compensated/indirect strict concavity does not

imply that the game features strategic substitutes or complements as the following examples also

makes clear.22

Example 2 (Continued) In the Cournot model Ψi(si, Q) = P (Q) + siP
′(Q) − c′i(si). Hence

the uniform local solvability condition will hold if DsiΨi(si, Q) = P ′(Q) − c′′i (si) < 0 whenever

P (Q) + siP
′(Q)− c′i(si) = 0. Clearly this holds if costs are convex and inverse demand is strictly

decreasing, which certainly does not imply the strategic substitutes condition P ′(Q)+siP
′′(Q) ≤ 0

(see footnote 12). In fact, as may be verified a different sufficient condition for uniform local

solvability when ci is strictly increasing is that
sic
′′
i (si)

c′i(si)
> 1. This condition depends only on

the cost function ci, whereas the condition for strategic substitutes depends only on the inverse

demand function P . So here we are actually looking at fully independent conditions for one or

the other to hold.23

Example 3 (Continued) We show in Section 5.2 that the model of private contributions to

public good provision satisfies the uniform local solvability condition if and only if the public

good is strictly normal. In contrast, this will be a game of strategic substitutes if and only if the

private good is normal (see the first part of Example 3 in Section 2).

Example 1 (Continued) Contests also satisfy the uniform local solvability condition under very

weak and natural conditions introduced in Proposition 1 in Section 5. Contests are neither games

22Interestingly, the converse statement is true for games with strategic complements, a linear aggregator (g(s) =∑
i si), and strictly concave payoff functions. To see this, note that it always holds that D2

sisiπi = DsiΨi +DQΨi.
The game has strategic complements if and only if DQΨi ≤ 0 everywhere. So if payoff functions are strictly concave
(or if they are merely concave and the game has strict strategic complements, DQΨi < 0), it must hold that
DsiΨi < 0 which is uniform local solvability.

23It is worth noting that the condition P ′(Q) − c′′i (si) < 0 is “one half” of Hahn (1962)’s conditions for local
stability of Cournot equilibrium (see Vives (1990), Chapter 4 for an extensive discussion of this and related condi-
tions). The “other half” is the condition for strategic substitutes just stated. As mentioned by Corchón (1994) (p.
156), Corchon’s “strong concavity condition” reduces precisely to the two Hahn conditions in the Cournot model
(except that strategic substitutes is strengthened to strict strategic substitutes). As a consequence, the results to
follow will be seen to generalize Corchón (1994)’s results for the Cournot model (we return to this issue in section
5.3).
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of strategic substitutes or strategic complements.

Thinking of the local solvability condition somewhat more formally, the requirement is that

the determinant of DsiΨi is nonzero on the subspace where Ψi = 0. The term refers to the fact

that if this determinant were equal to zero, there would not be a unique solution to a set of

equations of the form DsiΨi · a = b (again defined on the subspace where Ψi = 0), where a and

b are N -dimensional vectors. This type of equation arises when constructing the backward reply

correspondences for the purposes of comparative static analysis. This discussion also motivates

the term “local solvability condition”. The local solvability condition’s generality and role for

comparative statics analysis is discussed further in two remarks at the end of this section.

We next introduce the appropriate notion of positive shocks for nice games. Since the definition

aims for maximum generality, we mention already here that if a player i’s strategy set is a lattice,

his payoff function is supermodular in si, and exhibits increasing differences in si and t, then the

shock will be positive.24 Thus this section’s notion of a positive shock is weaker than that of

Section 3. But in general, a positive shock need not satisfy these standard conditions from the

theory of monotone comparative statics - in particular, it is irrelevant for our results here whether

or not strategy sets are lattices.

Because the aggregator is separable it can be written as g(s) = H
(∑I

j=1 hj(sj)
)

where

hi : Si → R and H : R → R (cf. Definition 1). It is clear that the term hi(si) fully “captures”

agent i’s effect on the aggregate. Intuitively, our generalized definition of a positive shock requires

that an increase in the exogenous variable leads to an increase in the term hi(si) and thus increases

the aggregate given everyone else’s strategies. In comparison, our previous definition, Definition

5, made the stronger requirement that a player’s (smallest and largest) strategy should increase

with the exogenous variable.

Definition 9 (Positive Shocks) A change in the parameter vector t is a positive shock to

player i if the largest and smallest selections from this player’s “composite” best responds corre-

spondence hi(Ri(s−i, t)) are increasing in t. That is, consider t < t′ ∈ T and let hi ◦ ri(s−i, t) and

hi ◦ ri(s−i, t) be the maximal and minimal elements of hi(Ri(s−i, t)) ⊆ R. Then t is a positive

shock to player i if and only if hi ◦ ri(s−i, t) ≤ hi ◦ ri(s−i, t′) and hi ◦ ri(s−i, t) ≤hi ◦ ri(s−i, t′)
for all s−i ∈ S−i.

Our first result in this section characterizes the comparative statics of the aggregate. It is

similar in spirit to Theorem 3 from the previous section, except that the shock is not restricted

24The same observation applies if the payoff function instead satisfies the weaker quasi-supermodularity and
single-crossing conditions of Milgrom and Shannon (1994).
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to “hit the aggregate”. Comparison can also be made with Theorem 5 of the previous section,

but unlike that Theorem, the following result applies whether or not the shock hits only one of

the players.

Theorem 6 (Aggregate Comparative Statics) Consider a nice aggregative game where each

player’s payoff function satisfies the local solvability condition. Then a positive shock t ∈ T leads

to an increase in the smallest and largest equilibrium aggregates, i.e., the functions Q∗(t) and

Q∗(t) are (globally) increasing in t.

The same results apply without any boundary conditions on payoff functions when N = 1 and

the uniform local solvability condition is satisfied.

Proof. See Section 10.5

Our next result is parallels Theorem 4 of the previous section, but now makes a predictive

statement about the overall aggregate after entry of an additional player (instead of the aggregate

of the strategies of existing players). Let us define 0 ∈ Si to stand for “inaction”. As in the

previous section, the convention is that I + 1th player takes this action before entry.

Theorem 7 (Entry) Consider a nice aggregative game where each player’s payoff function satis-

fies the local solvability condition. Let Q∗(I) and Q∗(I) denote the smallest and largest equilibrium

aggregates in a game with I ∈ N players where Si ⊆ RN+ and 0 ∈ Si for all i ∈ I. Then for any

I ∈ N, Q∗(I) ≤ Q∗(I + 1) and Q∗(I) ≤ Q∗(I + 1), i.e., entry increases the smallest and largest

aggregates in equilibrium. Moreover, if the aggregator g is strictly increasing and the entrant

chooses a non-zero strategy following entry, the above inequalities are strict.

The same results apply without any boundary conditions on payoff functions when N = 1 and

the uniform local solvability condition is satisfied.

Proof. See Section 10.6.

Finally, our third result characterizes the comparative statics of individual strategies. It is

useful to note Theorem 8 is the first (and only) result among those presented in this and the

previous section that directly depend on the implicit function theorem. As such it is a purely

local result and also requires that the equilibrium strategy studied is interior.

Theorem 8 (Individual Comparative Statics) Consider a nice aggregative game where each

player’s payoff function satisfies the local solvability condition (or the case with N = 1 with-

out boundary conditions but with the local solvability condition). Consider player i’s equilibrium
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strategy s∗i (t) associated with the smallest (or largest) equilibrium aggregate at some equilibrium

s∗ = s∗(t) given t ∈ T . Assume that the equilibrium s∗ lies in the interior of S and that t is a

positive shock. Then the following results hold:

• s∗i (t) is (coordinatewise) locally increasing in t provided that

−[DsiΨi(s
∗
i , g(s∗), t)]−1DQΨi(s

∗
i , g(s∗), t) ≥ 0

• Suppose that the shock t does not directly affect player i (i.e., πi = πi(s)). Then the sign

of each element of the vector Dts
∗
i (t) is equal to the sign of each element of the vector

−[DsiΨi(s
∗
i , g(s∗))]−1DQΨi(s

∗
i , g(s∗)). In particular, s∗i (t) will be (coordinatewise) locally

decreasing in t whenever:

−[DsiΨi(s
∗
i , g(s∗))]−1DQΨi(s

∗
i , g(s∗)) ≤ 0

Proof. By the implicit function theorem, we have

DsiΨi(si, Q, t)dsi = −DQΨi(si, Q, t)dQ−D2
sitΠi(si, Q, t)dt.

The results follow from this observation and the fact that Q increases with t (where Q is either

the smallest or largest equilibrium aggregate).

We end this section with two remarks the further characterizes the scope and content of the

local solvability condition for comparative statics.

Remark 5 (Weaker Conditions) Some version of the local solvability condition cannot be

dispensed with for the previous results. Example 10.1 in the Introduction shows the possibility of

perverse comparative statics when the local solvability condition does not hold (see also Section

5.4). Nevertheless, the results presented in this section continue to hold under weaker conditions.

In particular, the following generalization would be sufficient, though the condition in Definition

7 is easier to state and verify. The alternative condition is as follows: when Ψi(si, Q, t) = 0, there

should be open neighborhoods Nsi and MQ of si and Q, respectively, and a continuous map

bi :MQ → Nsi such that for each Q̂ ∈MQ, bi(Q̂) is the unique solution to Ψi(si, Q̂, t) = 0 in Nsi .
This implies that that the first-order condition Ψi(si, Q, t) = 0 admits a local solution in si as a

function of Q. Naturally, in view of the implicit function theorem, this weaker condition follows

from our local solvability condition in Definition 7. Other alternatives to the local solvability

condition are discussed in Section 7.
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Remark 6 (Ordinality) It is useful to note that the local solvability condition is ordinal in sev-

eral ways: it is independent of any strictly increasing transformation of payoff functions as well

as any strictly increasing transformation of the aggregator. Also, the local solvability condition

does not depend on the choice of the coordinate system (diffeomorphic transformations of the

strategy sets). Let us verify these claims in turn. Firstly, local solvability holds for the payoff

function πi(s, t) if and only if it holds for Φ(πi(s, t)) where Φ : R → R is any strictly increasing

and twice continuously differentiable function, with derivative denoted by Φ′ (where differentia-

bility is needed here to ensure that the transformed payoff function is also twice continuously

differentiable). In particular, for all s′i and Q′, we have that

Ψi(s
′
i, Q
′, t) = 0⇔ Φ′(Πi(si, Q, t))Ψi(si, Q, t) = 0.

Ordinality of the local solvability condition follows if |DsiΨi(s
′
i, Q′)| 6= 0 implies

|Dsi [Φ
′(Πi(s

′
i, Q
′, t))Ψi(s

′
i, Q
′, t)]| 6= 0. This is true since, when Ψi(s

′
i, Q
′, t) = 0,

|Dsi [Φ
′(Πi(s

′
i, Q
′, t))Ψi(s

′
i, Q
′, t)]| = Φ′(Πi(s

′
i, Q
′, t))|DsiΨi(s

′
i, Q
′)|.

That local solvability is independent of any strictly increasing transformation of the payoff

function immediately implies that if it holds with the aggregator g(s), then it holds with the

aggregator g̃(s) = f(g(s)) where f : R → R is a strictly increasing and differentiable function.

To see this simply note that Πi(si, g(s)) = Πi(si, f
−1(g̃(s))) where g̃(s) = f(g(s)). Denoting the

new aggregate by Q̃ = g̃(s), it is clear that Ψi(si, Q̃) = Ψi(si, Q). Evidently then |DsiΨi(si, Q)| =
|DsiΨi(si, Q̃)| and the conclusion follows.

Finally, the local solvability condition is a “coordinate free” assumption in the sense that we

may replace each strategy vector si by a transformed vector s̃i = ψi(si) where ψi : RN → RN is a

diffeomorphism. The local solvability condition then holds for the original strategies if and only

if it holds for the transformed ones. To see this notice that given such transformations, the payoff

function of player i becomes πi(ψ
−1
i (s̃i), ψ

−1
−i (s̃−i), t), where ψ−1−i = (ψ−1j )j 6=i. Local solvability

requires that,

Dψ−1i (s̃i)Ψi(ψ
−1
i (s̃i), Q) = 0⇒ |Ds̃i [Dψ

−1
i (s̃i)Ψi(ψ

−1
i (s̃i), Q)]| 6= 0.

Since Dψ−1i (s̃i)Ψi(ψ
−1
i (s̃i), Q) = 0 ⇔ Ψi(ψ

−1
i (s̃i), Q) = 0 (Dψ−1i (s̃i) is a full rank matrix), we

have that

|Ds̃i [Dψ
−1
i (s̃i)Ψi(ψ

−1
i (s̃i), Q)]| = |Dψ−1i (s̃i)DsiΨi(ψ

−1
i (s̃i), Q)[Dψ−1i (s̃i)]

T |.

But it is clear that the latter determinant will be non-zero if and only if |DsiΨi(ψ
−1
i (s̃i), Q)|

= |DsiΨi(si, Q)| 6= 0.
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5 Applying the Theorems

In this section, we return to the examples discussed so far (contests, Cournot competition and

private contributions to public goods) and show that our methods allow very general comparative

static results in these models. We also illustrate how our results can be applied to games with

multidimensional strategies using a model of technology choice in oligopolistic competition.

5.1 Models of Contests and Fighting

Recall that general contests introduced in Example 1 in the Introduction. The payoff function of

participant i can be written as

πi (si, s−i) = Vi ·
hi (si)

R+H
(∑I

j=1 hj (sj)
) − ci (si) , (12)

where si denotes agent i’s effort, hi : R+ → R+ for each i ∈ I and H : R+ → R+. The formulation

chosen here is very general, and allows not just for standard contests (where often R is taken equal

to zero), but also includes models of rent-seeking, as well as patent races in the spirit of Loury

(1979), Dixit (1987) and Skaperdas (1992).

As mentioned in the Introduction, contests generally feature neither strategic substitutes nor

complements. Therefore, the results in Section 3 do no apply, nor do any of the well-known results

on supermodular games mentioned in the Introduction. In this case, the most obvious strategy

for deriving comparative static results is to use the implicit function theorem. This is indeed

what most of the literature does. Unfortunately, the implicit function theorem approach yields

no unambiguous conclusions unless we make additional, strong assumptions. For this reason,

previous treatments have restricted attention to special cases of the above formulation. For

example, Tullock (1980) studied two-player contests, while Loury (1979) focused on symmetric

contests with (ad hoc) stability conditions. The most general comparative statics results available

in the literature are to our knowledge those of Nti (1997) who assumes that agents are identical

(the game is symmetric), that H = id (the identity function), that hi = h for all i and concave

(a symmetric, concave contest success function), and that costs are linear (ci(si) = c̄si for some

constant c̄ > 0).

Using the results of Section 4, we can establish considerably more general and robust results

on this important class of models. In particular, no symmetry assumptions are imposed what so

ever.25

25Since we do not assume concavity of payoff functions, the following proposition also generalizes the existence
result of Szidarovszky and Okuguchi (1997).
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Proposition 1 Consider the contest games introduced in Example 1 and suppose that H is con-

vex, hi and ci are strictly increasing, and that the following condition holds:

h′′i (si)

h′i(si)
≤ c′′i (si)

c′i (si)
for all si ∈ Si.

Then there exists a (pure-strategy) Nash equilibrium. Furthermore:

1. The smallest and largest aggregate equilibrium efforts are increasing in any positive shock

(e.g., a decrease in R or an increase in Vi for one or more players).

2. Entry of an additional player increases the aggregate equilibrium effort.

3. There exists a function η : R→R such that the changes in parts 1 or 2 above are associated

with an increase in the effort of player i ∈ I and the corresponding equilibrium aggregate

Q∗ provided that i is “dominant” in the sense that hi (s∗i ) ≥ η (Q∗). Conversely, if i is “not

dominant”, i.e., hi (s∗i ) < η (Q∗), then the changes in parts 1 and 2 decrease player i’s effort

provided that the shock does not affect this player directly (e.g., corresponding to a decrease

in another player’s costs).

Proof. The proof simply involves verifying the uniform local solvability condition and applying

the results from Section 4. The details are given in Section 10.7 in the Appendix.

Proposition 1 can also be extended to the case in which H is not convex. Convexity of H

ensures that the first-order condition Dsiπi(si, s−i) = 0 is sufficient for a maximum, but it is

not necessary for this conclusion. Observe also that the conditions of Proposition 1 are satisfied

if H is the identity function, ci is convex, and hi is concave.26 Szidarovszky and Okuguchi

(1997) prove that these conditions imply uniqueness of equilibrium provided that R = 0 in (12).27

Such uniqueness is not necessary or assumed in Proposition 1. In addition, Proposition 1 also

26The proof of Proposition 1 shows that the function η in part 3 is given by

η(Q∗) ≡

[
2H ′

(
H−1(Q∗)

)
(R+Q∗)

−
H ′′

(
H−1(Q∗)

)
H ′ (H−1(Q∗))

]−1

.

Therefore, when, for example, H = hi = id (the identity function), and R = 0, we have η(Q∗) = Q∗/2, and so
player i is “dominant” if and only if s∗i ≥ Q∗/2. In the standard interpretation of a contest, this means that
she is dominant when her probability of winning the prize is greater than 1/2—i.e., when she is a favorite in the
terminology of Dixit (1987). However, this favorite-to-win interpretation does not necessarily apply for more general
games covered by Proposition 1. We therefore use the term “dominant” rather than “favorite”.

27More recently, Cornes and Hartley (2005) have proposed a very nice and simple proof of this result based on
what they refer as “share functions”. Although Cornes and Hartley do not consider comparative statics, their “share
function” approach could be used to establish results similar to the results in Proposition 1 under these stronger
assumptions if, in addition, one also imposed that R = 0 in (12). R = 0 amounts to assuming no discounting in
patent races and “no wastage” in contests, and is thus quite restrictive.

When R > 0, the “share function” approach cannot be used to derive robust comparative statics. The reason
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covers important cases where hi is not concave. For example, Hirshleifer (1989) proposes the logit

specification of the contest success function, with H = id (the identity function), and hi(si) = ekisi

(ki > 0), and studies the special case where ki = k for all i under additional assumptions. In

this case, h′′i (si) /h
′
i(si) = ki. So if, in addition, costs are also exponential, ci(si) = elisi , the

conclusions of Proposition 1 continue to apply provided that ki ≤ li.

5.2 Private Provision of Public Goods

We next consider the workhorse model of public good provision originally studied by Bergstrom

et al. (1986). There are I individuals, each making a voluntary contribution to the provision of a

unique public good. Individual i maximizes her utility function

ui

ci, I∑
j=1

sj + s̄


subject to the budget constraint ci + psi = mi. Here mi > 0 is income, ci private consumption,

and si is agent i’s contribution to the public good, so that
∑I

j=1 sj+s̄ is total amount of the public

good provided. The exogenous variable s̄ ≥ 0 can be thought of as the baseline (pre-existing)

level of the public good that will be supplied without any contributions.

Substituting for ci, it is easily seen that this is an aggregative game with reduced payoff

function given by

Πi

si, I∑
j=1

sj ,m, p, s̄

 ≡ ui
mi − psi,

I∑
j=1

sj + s̄

 .

The aggregator is here simply g(s) =
∑I

j=1 sj . When s∗ = (s∗i )i∈I is an equilibrium, we

refer to g(s∗) =
∑I

i=1 s
∗
i as the aggregate equilibrium provision. Let us simplify the exposition

and notation here by assuming that ui is smooth and that strategy sets are intervals of the type

Si = [0, s̄i] ⊆ R. The private good will be normal if and only if the following condition holds for

all s ∈ S:

−pD2
12ui

mi − psi,
I∑
j=1

sj + s̄

+D2
22ui

mi − psi,
I∑
j=1

sj + s̄

 ≤ 0. (13)

for this is that the “share function” approach uses the fact that this function is decreasing everywhere, whereas
when R > 0, it may be increasing. To see this, apply the implicit function theorem to the condition Ψ(si, Q) = 0
imposing hi(si) = si for all i. Rewrite this in terms of “shares”, zi = si/Q, so that [−Vi − (R + Q)2c′′i ]dzi =
[V RQ−2 + (R + Q)2c′′i + c′i · Q−2(2(R + Q)Q − (R + Q)2)]dQ. The coefficient of dzi is clearly negative. When
R = 0, the coefficient of dQ on the right-hand-side is unambiguously positive, hence dzi/dQ < 0, i.e., agent i’s
share function is strictly decreasing. But in general, this may fail when R > 0 is allowed. In particular, the term
c′i · Q−2(2(R + Q)Q − (R + Q)2) will be positive if and only if Q ≥ R. Clearly, nothing prevents c′i from being
sufficiently large for this term to dominate so that the share function becomes increasing when Q < R.
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Notice that the left-hand side of (13) is equal to D2
sisjΠi. Hence the private good is normal

if and only if payoff functions exhibit decreasing differences. This then becomes a game with

strategic substitutes (cf. Definition 3), and the following result therefore follows directly from the

results in Section 3 (proof omitted):

Proposition 2 Consider the public good provision game and assume that the private good is

normal. Then there exists a (pure-strategy) Nash equilibrium. Furthermore:

1. An increase in s̄ leads to a decrease in the smallest and largest aggregate equilibrium provi-

sions.

2. The entry of an additional agent leads to a decrease in the smallest and largest aggregate

equilibrium provisions by existing agents.

3. A positive shock to agent i will lead to an increase in that agent’s smallest and largest equi-

librium provisions and to a decrease in the associated aggregate provisions of the remaining

I − 1 players.

The observation that the public good provision model has a pure strategy Nash equilibrium

assuming merely that the private good is normal appears to be new.28 The absence of any

concavity assumptions highlights that results of Proposition 2 could not have been derived using

the implicit function theorem.29

If instead, we assume that the public good is (strictly) normal, we can obtain additional strong

results using our findings on nice games from Section 4. Indeed, suppose that the payoff function

is pseudo-concave (which was not assumed for Proposition 2). Then the public good will be

(strictly) normal if and only if the following condition holds for all s ∈ S (here Q = g(s)):30

DsiΨi(si, Q) = p2D11ui(mi − psi, Q)− pD21ui(mi − psi, Q) < 0 (14)

So the public good is strictly normal if and only if the uniform local solvability condition holds.

What is more, (14) implies that an increase in mi (or a decrease in p) constitutes a positive shock,

28Nevertheless, it does follow readily from Novshek (1985) and from Jensen (2010) (see Section 3) once the above
connection between normality and strategic substitutes has been made. Note also that convexity of strategy sets
and differentiability of payoff functions were assumed here only to simplify the exposition. Proposition 2 is equally
valid with, for example, finite strategy sets.

29This statement also applies to Corchón (1994), whose comparative statics results on games with strategic
substitutes are indeed based on the implicit function theorem. But even ignoring this, it is easy to see that
Corchon’s “strong concavity assumption” amounts to assuming that both the private and public goods are strictly
normal. This “double normality” assumption (as it is often called) dates all the way back to the original article of
Bergstrom et al. (1986).

30The equivalence between (strict) normality of the public good and (14) follows since ∂si(m, p,
∑
j 6=i sj)/∂m =

α(pD2
12ui − p2D2

11ui).
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i.e., D2
simΠi ≥ 0 and D2

sipΠi ≤ 0, respectively (cf. Definition 9). The next proposition therefore

follows immediately from Theorems 6-8 (proof omitted).31

Proposition 3 Consider the public good provision game and assume that the public good is

(strictly) normal, that payoff functions are pseudo-concave in own strategies and that strategy

sets are convex. Then there exists a (pure-strategy) Nash equilibrium. Furthermore:

1. Any positive shock to one or more of the agents (e.g., a decrease in p, or increases in one or

more income levels, m1, . . . ,mI) leads to an increase in the smallest and largest aggregate

equilibrium provisions.

2. The smallest and largest aggregate equilibrium provisions are increasing in the number of

agents.

3. The changes in 1 and 2 above are associated with an increase in the provision of agent i if

the private good is inferior for this agent, and with a decrease in agent i’s provision if the

private good is normal and the shock does not directly affect the agent.

It is also useful to note that Proposition 3 could be obtained under even weaker conditions by

using Corollary 3 presented in Section 7 below. In particular, it can be verified that if the public

good is normal (condition (14) holding as weak inequality) and payoff functions are quasi-concave

(rather than pseudo-concave), the conditions of this corollary are satisfied and Proposition 3

remains valid. We used Theorems 6-8 here since Corollary 3 is not introduced until Section 7.

5.3 The Cournot Model

Considered the Cournot model of quantity competition discussed in Example 2. There are I firms,

each choosing si ∈ [0, s̄i] to maximize profits:

πi(s, t) = siP

 I∑
j=1

sj + t̄

− ci(si, ti). (15)

Here ti is a parameter that affects the cost of firm i, and t̄ is a parameter affecting inverse demand

directly. We assume throughout that D2
sitici ≤ 0, i.e., that an increase in ti is a positive shock.

Clearly, this is an aggregative with g(s) =
∑

j sj . Moreover, it features strategic substitutes

provided that

P ′(Q+ t̄) + siP
′′(Q+ t̄) ≤ 0, (16)

31Note in particular that (strict) normality implies local solvability as well as regularity so the statements in
Proposition 3 are valid without any boundary conditions on payoff functions.
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where Q ≡
∑I

j=1 sj .
32 Since this condition does not depend on cost functions, if it holds, an

equilibrium will exist regardless of whether profit/payoff functions are concave and/or strategy

sets are convex (Novshek (1985), Kukushkin (1994)). Our methods provide general comparative

static results for this model.33 In fact, the following result follows immediately as an application

of the theorems provided in Section 3 (proof omitted):

Proposition 4 Consider the Cournot model and assume that (16) holds. Then this is a game

with strategic substitutes and the following comparative statics results apply:

1. An increase in t̄ leads to a decrease in the smallest and largest aggregate equilibrium outputs.

2. The entry of an additional firm leads to a decrease in the smallest and largest equilibrium

outputs produced by the existing agents.

3. A positive shock to agent i (an increase in ti) will lead to an increase in that agent’s smallest

and largest equilibrium outputs and to a decrease in the associated aggregate equilibrium

outputs of the remaining I − 1 firms.

If instead we were to assume concavity (or pseudo-concavity), comparative statics can be

obtained by using results from the existing literature.34

5.4 Technology Choice in Oligopoly

As a final application, we consider games in which oligopoly producers make technology choices

(as well as setting output). Our treatment here will also illustrate how our results with one-

dimensional aggregates can be applied when strategy sets are multidimensional and also clarifies

how “perverse” comparative statics may arise in such games and how it can be ruled out. For a

general and related discussion of models of technological choice and competition see Vives (2008).

Consider a Cournot model with I heterogeneous firms. Let q = (q1, ..., qI) be the output vector

and a = (a1, ..., aI) the technology vector. Let us define Q =
∑I

j=1 qj as aggregate output. Profit

32A sufficient condition for (16) is that the elasticity of the P ′ function εP (Q) = P ′′ (Q)Q/P ′ (Q) is less than
1(naturally, P ′′ (Q) ≤ 0 is in turn sufficient for this).

Amir (1996) studies conditions under which the Cournot model will be a game of strategic substitutes or comple-
ments (our results on strategic substitutes are equally valid under the ordinal conditions of Milgrom and Shannon
(1994) which is what Amir focuses on).

33To the best of hour knowledge, there are no existing comparative statics results that apply to the model at this
level of generality. To reiterate a point we have already emphasized, this is because the implicit function theorem
cannot be used without assuming concavity of payoffs, convexity of strategy sets, interiority, and so forth, and also
because in this case results from supermodular games do not apply (except in the special case of two firms).

34See however the discussion in footnote 23 of Section 4: In the absence of strategic substitutes (e.g., Amir
(1996)), the comparative statics results we get from the theorems in Section 4 are new.
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of firm i is

Πi (qi, ai, Q) ≡ πi (q, a) = qiP (Q)− ci (qi, ai)− Ci (ai)

where P is the (decreasing) inverse market demand, the cost function ci is a function of firm i’s

quantity and technology choices, and Ci is the cost of technology adoption. Assume that P , ci

and Ci (for each i) are twice differentiable, P is strictly decreasing decreasing (P ′ (Q) < 0 for all

Q), Ci is convex, and ∂ci (qi, ai) /∂qi∂ai < 0 (for each i), so that greater technology investments

reduce the marginal cost of production for each firm.

The first-order necessary conditions for profit maximization are

∂πi
∂qi

= P ′ (Q) qi + P (Q)− ∂ci (qi, ai)

∂qi
= 0

∂πi
∂ai

= −∂ci (qi, ai)

∂ai
− ∂Ci (ai)

∂ai
= 0.

Naturally, we also require the second-order conditions to be satisfied, which here amount to

D2
(qi,ai)

πi being negative semi-definite. Let us now consider the effect of a decline in the cost

of technology investment by one of the firms (i.e., a shift in Ci), which clearly corresponds to

a positive shock. The results from Section 4 suggest that we should check the local solvability

condition. In particular, consider the matrix

D(qi,ai)Ψi =

 P ′ (Q)− ∂2ci
∂q2i

− ∂2ci
∂qi∂ai

− ∂2ci
∂qi∂ai

−∂2ci
∂a2i
− ∂2Ci

∂a2i


for each i. When ci (qi, ai) is convex, the matrix −∂2ci

∂q2i
− ∂2ci
∂qi∂ai

− ∂2ci
∂qi∂ai

−∂2ci
∂a2i


is negative semi-definite. Since P ′ (Q) < 0 and ∂2Ci/∂a

2
i ≤ 0, this is sufficient to guarantee that

|DΨi| < 0. Therefore, whenever each ci (qi, ai) is convex, the local solvability condition is satisfied.

Hence, a decline in the cost of technology investments for one of the firms will necessarily increase

total output. Similarly, the effects of an increase in demand on output and technology choices

can be determined robustly. The following proposition summarizes these results (proof omitted):

Proposition 5 Consider the technology adoption game described above and assume that the cost

functions ci = ci(qi, ai) (for each i) are convex. Then the local solvability condition holds and as

a consequence:

1. Any positive shock to one or more of the firms (e.g., a decrease in marginal costs parame-

terized via ci = ci(qi, ai, t)) will lead to an increase in total equilibrium output.
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2. Entry of an additional firm will lead to an increase in total output.

It is also noteworthy that the oligopoly-technology game is a game with strategic substitutes

when ∂2ci(qi, ai)/∂qi∂ai ≤ 0.35 So when technological development lowers the marginal cost

of producing more input, similar result to those of Proposition 5 follow from our theorems in

Section 3. However, notice that without local solvability, the conclusions would be weaker. In the

Appendix (Section 10.8), we provide a specific example of the technology adoption game, which

exhibits strategic substitutes but violates the local solvability condition, and thus a positive shock

may decrease (rather than increase) the equilibrium aggregate. That example illustrates that even

in “nice” aggregative games with strategic substitutes, the local solvability condition is critical for

the conclusion of Theorem 6: unless a shock hits the aggregate (in which case Theorem 3 applies),

a positive shock may lead to a decrease in the equilibrium aggregate when the local solvability

condition does not hold.

6 Multidimensional Aggregates

We have so far focused on aggregative games with one-dimensional aggregates, i.e., games where

g : S → R. Many important examples, require more than a one-dimensional aggregate, g : S →
RM , M > 1. Another game with multidimensional aggregates is the technology choice game

considered in Section 5.4 when technology costs also depend on some aggregate of the technology

choices of other firms, e.g., Ci = Ci (ai, A) for some aggregate of technology choices A.

6.1 Theory

We now discuss how our results can be extended to multidimensional aggregates under the addi-

tional assumptions. To simplify the exposition we focus on the case where the aggregator takes

the form g(s) =
∑I

j=1 sj .
36 In this case, naturally, g : S → RN , hence M = N . We continue to

assume that there are I players and we denote the set of players by I. In addition, we assume that

the game is both “nice” (Definition 6) and also exhibits strategic substitutes. Then, proceeding as

in Section 4, we define D1Πi(si, Q, t) ≡ DsiΠi(si, Q, t) and D2Πi(si, Q, t) ≡ DQΠi(si, Q, t). The

marginal payoff for player i can again then be expressed as:

Dsiπi(s, t) ≡ D1Πi

si, I∑
j=1

sj , t

+D2Πi

si, I∑
j=1

sj , t

 . (17)

35This condition ensures that payoff functions are supermodular in own strategies. It is easy to check that payoff
functions also exhibit decreasing differences in own and opponents’ strategies.

36All of the following results remain valid if we assume instead that g(s) = (g1(s11, . . . , s
1
I), . . . , g

N (sN1 , . . . , s
N
I ))

with each function gn separable. See the beginning of the proof of Theorem 6 for details on how one can transform
such a game into a game with a linear aggregator.
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Now denoting the vector of aggregates by Q ≡
∑I

j=1 sj , we again define:

Ψi(si, Q, t) ≡ D1Πi(si, Q, t) +D2Πi(si, Q, t). (18)

Parallel with the local solvability condition (Definition 7 in Section 4), we will place certain key

restrictions on the Ψi functions. These restrictions, together with our focus on nice games with

strategic substitutes, are collected in the following assumption.

Assumption 1 The game Γ is an aggregative nice game (Definition 6) and in addition, for each

player i, we have:

• (Strategic Substitutes) Si is a compact lattice, and πi(si, s−i, t) is supermodular in si and

exhibits decreasing differences in si and sj (for all j 6= i).

• (Strong Local Solvability) Every real eigenvalue of DsiΨi

(
si,
∑I

j=1 sj , t
)

is negative.

Remark 7 (Strong Local Solvability) That every real eigenvalue of DsiΨi

(
si,
∑I

j=1 sj , t
)

is

negative implies that its determinant is non-zero (this is becauseDsiΨi must have non-negative off-

diagonal elements, see the proof of Theorem 10 for further details). Consequently, local solvability

(Definition 7) is implied by strong local solvability.

Assumption 1 is straightforward to verify because of the following two relationships linking

the usual second-order matrices of πi and the gradient of the Ψi functions:

D2
sisjπi (s, t) ≡ D2

sisjΠi

(
si,

I∑
k=1

sk, t

)
≡ DQΨi

(
si,

I∑
k=1

sk, t

)
for all j 6= i, and (19)

D2
sisiπi (s, t) ≡ D2

sisiΠi

si, I∑
j=1

sj , t

 ≡ DsiΨi

si, I∑
j=1

sj , t

+DQΨi

si, I∑
j=1

sj , t

 . (20)

Since by (19), DQΨi ≡ D2
sisjΠi for all j 6= i, decreasing differences (strategic substitutes)

requires simply that DQΠi

(
si,
∑I

j=1 sj , t
)

is a non-positive matrix. Next we can sum the two

matrices DsiΨi and DQΨi in order to obtain D2
sisiπi (cf. (19)). Supermodularity holds if and

only if the matrix D2
sisiΠi has non-negative off-diagonal entries. Finally, strong local solvability

requires that the real eigenvalues of DsiΨi are negative. When DsiΨi is symmetric (which is

often the case in practice), this is the same as DsiΨi being a negative definite matrix. Note also

that concavity of payoff functions in own strategies is implied by Assumption 1 (see the proof of

Theorem 10). Thus, in games with multidimensional aggregates the verification of strong local
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solvability “replaces” the very similar task of verifying that the Hessian is negative definite. The

concavity implications of Assumption 1 also mean that when this assumption holds, the existence

of a pure-strategy Nash equilibrium follows immediately by Brouwer’s fixed point theorem. This

is noted in the following theorem (proof omitted):

Theorem 9 (Existence) Suppose that Γ satisfies Assumption 1. Then Γ has a (pure-strategy)

Nash equilibrium.

We next define the backward reply function of player i again using the first-order conditions:

si = bi(Q, t) ⇔ Ψi(si, Q) = 0. Assumption 1 simplifies matters here by ensuring that each Q

leads to a unique backward reply function (rather than a correspondence), bi(Q, t).
37 For any

given vector of aggregates Q, the gradient of bi(Q) is also well-defined and is given by:

DQbi(Q, t) = −[DsiΨi(bi(Q, t), Q, t)]
−1DQΨi(bi(Q, t), Q, t), (21)

and thus

DQb(Q, t) =
I∑
j=1

DQbj(Q, t). (22)

Let us also recall that an M -matrix is a matrix with positive real eigenvalues and non-positive

off-diagonal entries.38 We are then ready to state the following multidimensional version of The-

orems 3 and 6.

Theorem 10 (Shocks to the Aggregates) Suppose that Γ satisfies Assumption 1. Let t ∈ T ⊆
RN be a shock to the aggregate, that is, let πi(s, t) ≡ Πi

(
si, t+

∑I
j=1 sj

)
for all i ∈ I, and assume

that the matrix I− [DQb(Q+ t)]−1 exists and is non-singular. Then:

• (Sufficiency) If the matrix I−[DQb(Q+t)]−1 is an M -matrix (for all Q and t), an increase

in t ∈ T leads to a decrease in each component of the equilibrium aggregate vector.

• (Necessity) Conversely, let Q(t′) be an equilibrium aggregate given some vector of parame-

ters t′ ∈ T that hits the aggregate. Then if I− [DQb(Q(t′) + t′)]−1 is not an M -matrix, there

exists t′′ > t′ such that at least one component of the equilibrium aggregate vector increases

when t is raised from t′ to t′′.

37Fixing Q, it is clear that the gradient of Ψi(·, Q), DsiΨi(si, Q) (which is a N×N matrix), is non-singular at any
stationary point. In particular, from strong local solvability, the determinant of DsiΨi(si, Q) never changes sign and
never equals zero. This immediately implies that there exists a unique critical point (e.g., from the Poincare-Hopf
theorem; Milnor (1965)).

38Recall that an M -matrix and an inverse M -matrix are also P -matrices (i.e., all of their principal minors are
positive). Moreover, if a matrix has a non-positive off-diagonal, it is an M -matrix if and only if it is also a P -matrix.
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Proof. See Section 10.9.

In what follows, we will use the sufficiency part of Theorem 10 to present direct parallels to

the other theorems presented in Section 3. Nevertheless, the necessity part of this theorem is also

noteworthy, perhaps even surprising.

Given Theorem 10, the proofs of the next three theorems closely follow the proofs of the

analogous theorems for the one-dimensional case and are thus are omitted.39 For the next theorem,

suppose that the default inaction strategy of the entrant now is a vector of zeroes (or, more

generally, the least element in the entrant’s strategy set).

Theorem 11 (Entry) Suppose that Γ satisfies Assumption 1 and the sufficiency conditions in

Theorem 10. Then entry of an additional player leads to a decrease in the aggregates of the

existing players. In addition, at least one of the aggregates of all players must increase with entry,

and strictly so unless the entrant chooses inaction.

Theorem 12 (Idiosyncratic Shocks) Suppose that Γ satisfies Assumption 1 and the sufficiency

conditions in Theorem 10. Then a positive idiosyncratic shock to player i ∈ I leads to an increase

in this player’s equilibrium strategy and to a decrease in the associated aggregates of the existing

players.

Remark 8 (Sufficient Conditions for Two-Dimensional Aggregates) When N = 2 (g :

S → R2), the sufficient conditions are particularly easy to verify. In particular, I− [DQb(Q+ t)]−1

exists and is a non-singular M -matrix when −[DQb(Q + t)]−1 is a non-singular M -matrix. This

is generally the case (regardless of N), since the real eigenvalues of [I− [DQb(Q+ t)]−1] are equal

to (λ1 + 1), . . . , (λM + 1), where λ1, . . . , λM > 0 are the real eigenvalues of −[DQb(Q+ t)]−1.

In this two-dimensional case, −[DQb(Q + t)]−1 is a non-singular M -matrix if and only if the

determinant of DQb(Q + t) is positive. To see this first note that since DQb(Q + t) is a non-

positive matrix, its trace is non-positive. So when the determinant is positive, both eigenvalues

must be negative (when they are real; if they are not real, then there is nothing to check because

the definition of an M -matrix above requires only that the real eigenvalues be positive). It then

follows that −[DQb(Q + t)]−1 is a matrix with non-positive off-diagonal elements and positive

(real) eigenvalues, and thus it is a non-singular M -matrix.

39The only new feature is the second statement of the entry theorem (that at least one of the aggregates must
increase upon entry). This is a direct consequence of the fact that the backward reply function of the existing
players, b̄, is decreasing (this is proved as part of Theorem 10). Indeed, let Qb be the vector of aggregates before
entry, Qa the aggregates after entry, and sI+1 ≥ 0 be the strategy chosen by the entrant. Since b̄ is decreasing,
Qa ≤ Qb implies: 0 ≤ Qb −Qa = b̄(Qb)− b̄(Qa)− sI+1 ≤ −sI+1 which in turn implies sI+1 = Qb −Qa = 0.
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Now since DQb(Q + t) =
∑I

j=1DQbj(Q + t), a sufficient condition for DQb(Q + t) to have a

positive determinant is that each of the matrices DQbi(Q+t), i = 1, . . . , I is quasi-negative definite

(xTDQbi(Q + t)x < 0 for all x 6= 0). This is because the sum of quasi-negative definite matrices

is quasi-negative definite, and a 2 × 2 quasi-negative definite matrix has a positive determinant.

The next corollary exploits this observation.

Corollary 2 (Symmetric Games with Two-Dimensional Aggregates) Suppose that Γ

satisfies Assumption 1 and N = 2. Consider a shock to the aggregate. Then if the matrix

DQΨi(si,
∑I

j=1 sj + t) has a positive determinant for all s ∈ S and t ∈ T , a positive shock to

the aggregates will lead to a decrease in both of the aggregates in any symmetric equilibrium. In

addition, the results in Theorems 11-12 continue to hold when the existing players choose identical

strategies before and after entry (Theorem 11), and the players that are not affected by the shock

choose identical strategies before and after the arrival of the idiosyncratic shock (Theorem 12).

Proof. The aggregate in a symmetric equilibrium is given by Q = Ibi(Q + t) where i ∈ I is

any of the (identical) players. From Theorem 10, a positive shock to the aggregate decreases the

aggregate if only if [I− [DQb(Q+ t)]−1 is a non-singular M -matrix. From Remark 8, we only need

to verify that −[DQb(Q+ t)]−1 = −[DQbi(Q+ t)]−1/I is a non-singular M -matrix. When N = 2,

this holds if and only if the determinant of DQbi(Q+t) is positive. This is the case when DQΨi has

a positive determinant, because DsiΨi has a positive determinant and Dbi = −[DsiΨi]
−1DQΨi.

6.2 Example

As an example of a game with multidimensional aggregates, consider the oligopoly-technology

adoption game discussed in Section 5.4, enriched with an additional payoff interaction from tech-

nology choices. More specifically, the profit of firm i is

Πi (qi, ai, Q) ≡ πi (q, a) = qiP (Q)− ci (qi, ai)− Ci (ai, A)

where P is the (decreasing) inverse market demand, ci is the cost of producing output qi for firm

i’s as a function of its technology choice, and Ci is the cost of technology adoption, which also de-

pends on aggregate technology decisions summarized by A =
∑I

j=1 aj (e.g., through technological

spillovers across firms). Clearly, this is an aggregative of game with multidimensional aggregates.

We assume that P , c and C (for each i) are twice differentiable, P is strictly decreasing

decreasing (P ′ (Q) < 0 for all Q), all Cis and cis are convex, and ∂ic (qi, ai) /∂qi∂ai < 0 (for each

i), so that greater technology investments reduce the marginal cost of production for each firm.
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We also impose additional assumptions that enable us to apply Theorems 10-12 presented in the

previous subsection. These are:

1. The condition (16) introduced above is satisfied.

2. We have that for each i,
∂2Ci (ai, A)

∂ai∂aj
+
∂2Ci (ai, A)

∂A2
≥ 0.

This condition implies that there is some degree of “fishing out” in technological choices, in

the sense that greater investments by firm j, though typically benefiting firm i, also reduce

the marginal effect of firm i’s own technology investments on its own cost.

3. We have that for each i,

∂2ci(qi,ai)
∂a2i

∂2ci(qi,ai)
∂q2i(

∂2ci(qi,ai)
∂qi∂ai

)2 ≥

[
1
2(P ′′ (Q) qi + P ′ (Q) +

(
−∂2Ci(ai,A)

∂ai∂A
− ∂2Ci(ai,A)

∂A2

)]2
(P ′′ (Q) qi + P ′ (Q))

(
−∂2Ci(ai,A)

∂ai∂A
− ∂2Ci(ai,A)

∂A2

) .

To interpret this condition, note that the left-hand side of the inequality is a measure of

convexity of the cost function ci, whereas the right-hand side is the ratio of the arith-

metic to the geometric means of ∂2πi(qi, ai)/∂qi∂qj = P ′′qi + P ′ and ∂2πi(qi, ai)/∂ai∂aj =

−∂2Ci/∂ai∂A − ∂2Ci/∂A2 (for i 6= j). These terms are in turn the “strategic” interaction

effects, the first one from quantity choices and the second one from technology choices.

This ratio is equal to 1 when the two strategic effects are equal, i.e., ∂2πi(qi, ai)/∂qi∂qj =

∂2πi(qi, ai)/∂ai∂aj , and is increasing in the degree of “asymmetry of strategic effects”. This

condition, therefore, requires the cost function to be sufficiently convex to outweigh the

asymmetry of strategic effects.

It can be verified that convexity of cost functions ensures both that each firm’s problem is

supermodular and that the strong local solvability condition is satisfied. Conditions 1 and 2

ensure that this is a game of strategic substitutes. Together with convexity of cost functions,

these therefore guarantee that Assumption 1 is satisfied. Condition 3 is a sufficient (though not

necessary) condition for the matrix DQbi(Q + t) to be quasi-negative definite as discussed in

Remark 8. Consequently, under these conditions the requirements of Theorems 10-12 are met,

and strong comparative static results can be obtained in this game. These results are presented

in the next proposition and to the best of our knowledge, they could not be derived using just

the implicit function theorem or other methods.
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Proposition 6 Consider the technology adoption game with technological spillovers described in

this subsection. Assume that the cost functions ci = ci(qi, ai) and Ci (ai, A) (for each i) are twice

differentiable and convex, and conditions 1-3 above are satisfied. Then:

1. A positive demand shock will increase total equilibrium output.

2. A positive idiosyncratic shock to one of the firms (e.g., a decrease in marginal costs parame-

terized via ci = ci(qi, ai, t)) will lead to an increase in this firm’s output and technology and

reduce the aggregate output and technology of remaining firms.

3. Entry of an additional firm will lead to a decrease in the aggregate output and technology of

existing firms, and increase either overall aggregate output or aggregate technology or both.

Proof. See Section 10.10.

7 Nice Games without Differentiability

In this section, we extend the results for nice games presented in Section 4. Recall that the main

assumption of Section 4, local solvability, presupposes that payoff functions and the aggregator

are twice continuously differentiable. In this section, we show that robust comparative statics can

be derived without differentiability as long as a non-differentiable version of the local solvability

condition is imposed. We limit attention to the case of one-dimensional strategy sets (hence the

aggregate must be one-dimensional also). Recall that an aggregator always has a representation

of the form g(s) = H
(∑I

j=1 hj(sj)
)

, where H and h1, . . . , hi are strictly increasing functions.

Therefore, for any Q in the range of g, we have Q = g(s) ⇔ si = h−1i

[
H−1(Q)−

∑
j 6=i hj(sj)

]
.

Intuitively, this means that if we know the aggregate Q and the strategies of I − 1 players, we

also know the strategy of the last player. Let us also define Gi(Q, y) ≡ h−1i [H−1(Q)− y]. Recall

from Milgrom and Shannon (1994) that a function f(Q, y) satisfies the single-crossing property

in (Q, y) if, for all Q′ > Q and y′ > y, we have

f(Q′, y) ≥ (>) f(Q, y)⇒ f(Q′, y′) ≥ (>) f(Q, y′).

The main result in this section, presented next, shows that an appropriately-chosen single-

crossing property can replace the local solvability condition (Definition 7) and thus extends our

results to nice games without differentiability.

Theorem 13 (Comparative Statics for Nice Games without Differentiability) Consider

an aggregative game with one-dimensional convex, compact strategy sets, a separable aggregator,
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payoff functions that are upper semi-continuous and quasi-concave in own strategies. Suppose

that Πi(Gi(Q, y), Q, t) (for each i ∈ I) satisfies the single-crossing property in (Q, y). Then the

conclusions of Theorems 6 and 7 continue to hold. Moreover, provided that payoff functions are

twice differentiable and the equilibrium is interior, the conclusions of Theorem 8 also hold.

Proof. See Section 10.11.

Notice that differentiability is needed in Theorem 8 in order to even state this theorem’s main

conclusions. Clearly, the more interesting part of Theorem 13 concerns Theorems 6-7.

The next corollary uses the insights of Theorem 13 to provide another useful and simple

alternative to the local solvability condition for nice games.

Corollary 3 Consider a nice aggregative game with linear aggregator g(s) =
∑

i si, one-dimensional

strategy sets (i.e., N = 1), and assume that for each player i:

DsiΨi(si, Q) ≤ 0 for all si and Q (23)

Then the conclusions of Theorems 6, 7, and 8 continue to hold.

Proof. Since g is linear, Gi(Q, y) = Q − y and Πi(Gi(Q, y), Q, t) = Πi(Q − y,Q, t) (for each

i ∈ I). The condition DsiΨi(si, Q) ≤ 0 is equivalent to −DsiΨi = −D2
11Πi −D2

21Πi ≥ 0 for all si

and Q. This is in turn equivalent to Πi(Q− y,Q, t) exhibiting increasing differences in Q and y.

Since increasing differences implies the single-crossing property, the results follow from Theorem

13.

Note that Condition (23) in Corollary 3 requires that DsiΨi(si, Q) ≤ 0 for all si and Q. By

contrast, the local solvability condition requires DsiΨi(si, Q) 6= 0, but only when si and Q are

such that Ψi(si, Q) = 0. Thus neither condition generalizes the other. If (23) holds with strict

inequality throughout, i.e., DsiΨi(si, Q) < 0 for all si and Q, then local solvability would be

implied, though the weak inequality makes this condition easier to check and apply in a variety

of examples (recall the discussion in Section 5.2).40

8 Walrasian Play

When the aggregate Q results from the “average” of the strategies of a large number of players,

it may plausible to presume that each player i ∈ I will ignore the effect of its strategy on

40It can also be noted that (23) with strict inequality makes up “half” of what Corchón (1994) calls the “strong
concavity” condition. The other “half” of Corchon’s strong concavity condition requires payoff functions to exhibit
strictly decreasing differences in own and opponents’ strategies. This is not assumed in our analysis.
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the aggregate. In this case, each player i ∈ I will maximize the reduced payoff function Πi =

Πi(si, Q, t) with respect to si taking Q as given. This is the behavior assumed in standard general

equilibrium theory with a finite (but large) number of households. With analogy, we refer to the

situation in aggregative games where players ignore their impact on aggregates as Walrasian play

and the associated Nash equilibrium as a Walrasian Nash Equilibrium.41 For such games, our

results can be strengthened (and the proofs in fact become more straightforward). Here we briefly

outline the main results in this case, focusing on one-dimensional aggregates (i.e., K = 1).

Definition 10 (Walrasian Nash Equilibrium) Consider an aggregative game Γ = ((Πi, Si)i∈I , g, T ).

The strategy profile s∗(t) = (s∗1(t), . . . , s
∗
I(t)) is called a (pure-strategy) Walrasian Nash equilib-

rium given t ∈ T if holding Q(t) = g(s∗(t)) fixed, we have for each player i = 1, . . . , I that,

s∗i (t) ∈ Ri(Q, t) ≡ arg max
si∈Si

Πi(si, Q(t), t) . (24)

Notice that under Walrasian play, a player’s best responses Ri(Q, t) will depend on the ag-

gregate Q and the exogenous variables t. An increase in t is a positive shock for player i if the

smallest and largest selections from Ri(Q, t) are both increasing in t. The game features strategic

substitutes if each Si is a lattice, Πi is supermodular in si, and exhibits decreasing differences in

si and Q. When N = 1 and Πi is twice continuously differentiable, a sufficient condition for t

to be a positive shock is that D2
sitΠi(si, Q, t) ≥ 0 (for all Q and t), and a sufficient condition for

strategic substitutes is that D2
siQ

Πi(si, Q, t) ≤ 0 (for all Q and t).

As in previous sections, we maintain the compactness and upper semi-continuity assumptions.

Also, since as before, there may be multiple equilibria, we continue to focus on the smallest and

largest equilibrium aggregates Q∗(t) and Q∗(t) (cf. equations (9) and (8) in Section 3).

Theorem 14 (Comparative Statics for Walrasian Nash Equilibria) Consider an aggrega-

tive Γ and assume that the (reduced) payoff function Πi(si, Q, t) is quasi-concave in si ∈ Si for

each i ∈ I. Then a Walrasian Nash equilibrium exists. Moreover, we have that:

1. Theorems 6, 7, and 8 hold for Walrasian Nash equilibria. In particular, a positive shock to

one or more of the agents will lead to an increase in the smallest and largest equilibrium

aggregates, and entry increases the smallest and largest equilibrium aggregates. In addition,

suppose that payoff functions are smooth and the equilibrium is interior. Then for each

i ∈ I, s∗i (t) is locally coordinatewise increasing in a positive shock t provided that:

−[D2
sisiΠi(s

∗
i (t), Q(t), t)]−1D2

siQΠi(s
∗
i (t), Q(t), t) ≥ 0,

41Such “aggregate-taking” behavior has been studied extensively within evolutionary game theory, see for example
Vega-Redondo (1997), Possajennikov (2003), and Schipper (2004).
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and if Πi = Πi(si, Q) (i.e., the shock does not directly affect player i), then the sign each

element of the vector Dts
∗
i (t) is equal to the sign of each element of the vector

−[D2
sisiΠi(s

∗
i (t), Q(t))]−1D2

siQΠi(s
∗
i (t), Q(t)).

2. If Γ features strategic substitutes, then Theorems 3, 4, and 5 continue to hold for Walrasian

Nash equilibria.

Proof. (Sketch) For part 1, simply define Z(Q, t) ≡ {g(s) ∈ R : si ∈ Ri(Q, t) for all i}. In

view of our compactness and upper semi-continuity assumptions, Z (Q, t) is a convex-valued,

upper hemi-continuous correspondence. Then we can proceed as in the proof of Theorem 6 but

using Z (Q, t) instead of the function q. Figure 8 in the Appendix makes it clear that the general

argument remains valid if instead of the function q, we use a convex-valued correspondence. Given

this result, the proofs of Theorems 7, and 8 apply with minimal modifications.

For part 2, note that a shock to the aggregate is a negative shock (by decreasing differences

in si and Q), hence it leads to a decrease in the smallest and largest aggregates by the conclusion

from part 1. The conclusions of Theorems 4 and 5 are established by straightforward modifications

of the original proofs.

A noteworthy implication of Theorem 14 is that all our results for nice aggregate games con-

tinue hold for a Walrasian Nash equilibria without imposing local solvability or differentiability

and boundary conditions (only quasi-concavity is imposed to ensure that best response corre-

spondences are convex-valued). This highlights that the challenge in deriving robust comparative

static results in aggregative games lies in limiting the magnitude of the effect of own strategies

on the aggregate. It should also be noted that part 2 of the theorem is false if payoff functions

are not assumed to be quasi-concave, though the results do hold if the game instead features

strict strategic substitutes (i.e., if strictly decreasing differences is assumed instead of decreasing

differences in Definition 3).42 The proof of Theorem 14 also shows that any separability assump-

tions on the aggregator g are unnecessary: the conclusions hold provided that g is an increasing

function (without further restrictions).

9 Conclusion

This paper presented robust comparative static results for aggregative games and showed how

these results can be applied in several diverse settings. In aggregative games, each player’s payoff

42However, an equilibrium is not guaranteed to exist in this case because of lack of quasi-concavity. To apply the
result mentioned in the text one must thus first (directly) establish the existence of an equilibrium.
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depends on her own actions and on an aggregate of the actions of all players (for example,

sum, product or some moment of the distribution of actions). Many common games in industrial

organization, political economy, public economics, and macroeconomics can be cast as aggregative

games. Our results focused on the effects of changes in various parameters on the aggregates of

the game. In most of these situations the behavior of the aggregate is of interest both directly

and also indirectly, because the comparative statics of the actions of each player can be obtained

as a function of the aggregate. For example, in the context of a Cournot model, our results

characterize the behavior of aggregate output, and given the response of the aggregate to a shock,

one can then characterize the response of the output of each firm in the industry.

We focused on two classes of aggregative games: (1) aggregative of games with strategic

substitutes and (2) “nice” aggregative games, where payoff functions are twice continuously dif-

ferentiable, and (pseudo-)concave in own strategies. For example, for aggregative games with

strategic substitutes, we showed that:

1. Changes in parameters that only affect the aggregate always lead to an increase in the

aggregate (in the sense that the smallest and the largest elements of the set of equilibrium

aggregates increase).

2. Entry of an additional player decreases the (appropriately-defined) aggregate of the strate-

gies of existing players.

3. A “positive” idiosyncratic shock, defined as a parameter change that increases the marginal

payoff of a single player, leads to an increase in that player’s strategy and a decrease in the

aggregate of other players’ strategies.

We provided parallel, and somewhat stronger, results for nice games under a local solvability

condition (and showed that such results do not necessarily apply without this local solvability

condition).

The framework developed in this paper can be applied to a variety of settings to obtain

“robust” comparative static results that hold without specific parametric assumptions. In such

applications, our approach often allows considerable strengthening of existing results and also

clarifies the role of various assumptions used in previous analysis. We illustrated how these results

can be applied and yield sharp results using several examples, including public good provision

games, contests, and oligopoly games with technology choice.

Our results on games with multidimensional aggregates (Section 6) are only a first step in this

direction and our approach in this paper can be used to obtain additional characterization results

40



for such games. We leave a more systematic study of games with multidimensional aggregates to

future work. We also conjecture that the results presented in this paper can be generalized to

games with infinitely many players and with infinite-dimensional strategy sets. In particular, with

the appropriate definition of a general aggregator for a game with infinitely many players (e.g.,

along the lines of the separability definitions in Vind and Grodal (2003), Ch. 12-13), our main

results and in fact even our proofs remain valid in this case. Similarly, with the appropriate local

solvability condition in infinite dimension, all of our results also appear to generalize to games with

infinite-dimensional strategy sets. The extension of these results to infinite-dimensional games is

another area for future work.
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10 Appendix

10.1 An Example of “Perverse” Comparative Statics

Consider three players i = 1, 2, 3 with payoff functions πi(s) = −0.5s2i +αi(1−αi)−1(
∑

j 6=i sj)si+

βi(1 − αi)−1si defined locally in a sufficiently large neighborhood of the equilibrium found below.
Assume that α1 > 1, 1 > α2 > 0, α3 < 0, β1 < 0, β2 > 0, α1 + α2 + α3 > 1, β1 + β2 + β3 < 0,
and α1 + α3 < 1.

This is an aggregative game since we can write the payoffs as a function of players’ own
strategies and the aggregate Q =

∑
j sj: Πi(si, Q) = −0.5s2i +αi(1−αi)−1(Q−si)si+βi(1−αi)−1si.

By strict concavity, best response functions in this game are: ri(s−i) = αi(1 − αi)−1(
∑

j 6=i sj) +

βi(1 − αi)−1. Solving for the pure strategy Nash equilibrium (s∗i = ri(s
∗
−i), i = 1, 2, 3) we find a

unique equilibrium given by: s∗i = αiQ
∗+βi, where Q∗ = s∗1 + s∗2 + s∗3 = (β1 +β2 +β3)

−1(1−α1−
α2 − α3) is the equilibrium aggregate. Now consider a (small) increase in α2. This is a “positive
shock” to player 2: holding opponents’ strategies fixed, it increases player 2’s marginal payoff and
therefore “lifts” player 2’s best response function, ∂r2(s−2)/∂α2 > 0.43 But this positive direct
effect on player 2’s optimal strategy notwithstanding, an increase in α2 leads to a decrease in
player 2’s strategy in equilibrium:

∂s∗i
∂α2

= Q∗ + α2
∂Q∗

∂α2
=

β1 + β2 + β3
1− α1 − α2 − α3

+ α2
β1 + β2 + β3

(1− α1 − α2 − α3)2
< 0

As can also be seen, the positive shock to player 2 leads to a decrease in the equilibrium aggregate:

∂Q∗

∂α2
< 0.

In summary, a parameter change that unambiguously increases the marginal payoff for a player,
which should, all else equal, lead to an increase in that player’s strategy and the aggregate, in fact
leads to a decrease in the player’s strategy in equilibrium as well as a decrease in the aggregate.
This happens even though payoff functions are smooth and strictly concave, and the equilibrium
is unique, interior, and varies continuously with the exogenous variable α2.

10.2 Proof of Theorem 2

For each player i, define the correspondence Gr[Ri] : T → 2S by,

Gr[Ri](t) ≡ {s ∈ S : si ∈ Ri(s−i, t)} , t ∈ T

This correspondence is upper hemi-continuous and has a closed graph: if smi ∈ Ri(s
m
−i, t

m)
for a convergent sequence (sm, tm) → (s, t), then by the fact that Ri itself has a closed graph,
si ∈ Ri(s−i, t). Moreover, E(t) = ∩iGr[Rti]. The correspondence E : T → 2S is thus given by the
intersection of a finite number of upper hemi-continuous correspondences, and so is itself upper
hemi-continuous. In particular, E has compact values (E(t) ⊆ S, where S is compact). Therefore,
the existence of the smallest and largest equilibrium aggregates, Q∗(t) and Q∗(t), follows from
the continuity of g and from Weierstrass’ theorem. Upper semi-continuity of Q∗ : T → R follows

43In other words, player 2’s payoff function exhibits increasing differences in s2 and α2 (Topkis (1978)). This is
an equivalent way of defining a “positive shock” when strategy sets are one-dimensional and payoff functions are
concave.
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directly from the fact that g is upper semi-continuous and E is upper hemi-continuous (see
Ausubel and Deneckere (1993), Theorem 1). Lower semi-continuity of Q∗ follows by the same
argument since Q∗(t) ≡ −maxs∈E(t)−g(s) and g is also lower semi-continuous. Finally, when
the equilibrium aggregate is unique for all t, Q∗(t) = Q∗(t) and so is both upper and lower
semi-continuous and thus continuous in t on T . �

10.3 Proof of Theorem 3

Recall that πi(s, t) ≡ Πi(si, G(g (s) , t)) all i, where g : S → R is separable in s and G(g (s) , t) is
separable in (s, t). This implies that,

G (g (s) , t) = H

hT (t) +
I∑
j=1

hj (sj)

 ,

where g (s) = M
(∑

i∈I hi (si)
)

is the aggregator of Definition 1, and M is a strictly increas-
ing function. Moreover, recall that the best response correspondence Ri (s−i, t) is upper hemi-
continuous for each i ∈ I. Let hi (Si) be the image of the strategy set Si under hi (·) and define

the “reduced” best response correspondence R̃i

(
hT (t) +

∑
j 6=i hj(sj)

)
≡ Ri(s−i, t) for each i. We

can then define the following upper hemi-continuous (possibly empty-valued) correspondence for
each player i:

Bi(Q, t) ≡ {η ∈ hi(Si) : η ∈ hi ◦Ri(hT (t) +Q− η)} (25)

Let

Z(Q, t) ≡
I∑
j=1

Bj(Q, t)

be the aggregate backward reply correspondence associated with the aggregate Q =
∑

j hj(sj).

Clearly, the “true” aggregate g (s) = M
(∑

j hj(sj)
)

is monotonically increasing in the aggregate

Q =
∑

j hj(sj). Therefore, we may without loss of generality focus on
∑

j hj(sj) instead of g(s)

in the following. We shall sometimes go further and refer to Q =
∑

j hj(sj) as the equilibrium
aggregate in order to simplify the exposition.

Let q(Q, t) ∈ Z(Q, t) be the “Novshek-selection” shown as the thick segments in the figure
below. The precise definition of this selection follows next.44

Definition 11 (Novshek Selections) Let Qa, Qb ∈ R, Qa ≤ Qb. A selection q : [Qa, Qb] → R
from Z (i.e., a function with q(Q, t) ∈ Z(Q, t) for all Q ∈ [Qa, Qb]) is called a Novshek selection
(on [Qa, Qb]) if the following hold for all Q ∈ [Qa, Qb]:

1. q(Q, t) ≥ z for all z ∈ Z(Q, t).

2. q(Q, t) ≤ Q.

3. The backward reply selections bi(Q, t) ∈ Bi(Q, t) associated with q (i.e., backward reply
selections satisfying q(Q, t) =

∑
j bj(Q, t) all Q) are all decreasing in Q on [Qa, Qb], i.e.,

Q′′ > Q′ ⇒ bi(Q
′′, t) ≤ bi(Q′, t).

44The construction here is slightly different from the original one in Novshek (1985), but the basic intuition is
the same. Aside from being somewhat briefer, the present way of constructing the “Novshek-selection” does not
suffer from the “countability problem” in Novshek’s proof pointed out by Kukushkin (1994), since we use Zorn’s
Lemma to construct the selection.
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Figure 1: Constructing the aggregate “Novshek-selection”

Before we can construct a suitable Novshek selection, we need to establish the existence of an
element Qmax > 0 as in the figure, with the property that q < Qmax for all q ∈ Z(Qmax, t). This
can be done by suitably modifying an argument of Kukushkin (1994) (p. 24, l.18-20).

Lemma 1 There exists an element Qmax > 0 such that q < Qmax for all q ∈ Z(Qmax, t).

Proof. Let Di denote the subset of R upon which hi ◦ R̃i is defined, i.e., write γ ∈ Di if and only
if hi◦R̃i(γ) 6= ∅. Since hi◦R̃i is upper hemi-continuous, Di is closed. It is also a bounded set since

R̃i ⊆ Si and each Si is compact. Consequently, Di has a maximum, which we denoted by di. Then
extend hi ◦ R̃i from Di to Di∪ (di, Q

max] by taking hi ◦ R̃i(d) ≡ ⊥i all d ∈ (di, Q
max]. Here ⊥i can

be any small enough element (for each player i ∈ I) such that
∑

i⊥i < Qmax, ⊥i ≤ minhi◦R̃i(di),
and Qmax −⊥i ∈ (di, Q

max]. Defining the aggregate backward reply correspondence Z as above,
it is clear that Z(Qmax, t) = {

∑
i⊥i} < Qmax.

Let D ⊆ (−∞, Qmax] denote the subset of R upon which Z(·, t) is well-defined, i.e., the set
of those Q ≤ Qmax for which Bi(Q, t) 6= ∅ for all i. Abusing notation slightly, let [Q′, Qmax] ≡
D ∩ {Q : Q′ ≤ Q ≤ Qmax}. Any such interval [Q′, Qmax] will be compact because D is compact
(see the proof of the previous lemma for an identical argument).

Lemma 2 There exists an element Qmin ≤ Qmax and a well-defined Novshek selection q :
[Qmin, Qmax] → R on [Qmin, Qmax]. The element Qmin will be minimal in the sense that if
Q′ < Qmin, then there will not exist a Novshek selection on [Q′, Qmax].

Proof. Denote by Ω ⊆ 2R the set of all “intervals” [Q′, Qmax] upon which a selection with
properties 1.-3. exists. Notice that {Qmax} ∈ Ω so Ω is not empty. Ω is ordered by inclusion since
for any two elements ω′, ω′′ in Ω, ω′′ = [Q′′, Qmax] ⊆ [Q′, Qmax] = ω′⇔ Q′′ ≤ Q′. A chain in Ω is a
totally ordered subset (under inclusion). It follows directly from the upper hemi-continuity of the
backward reply correspondences that any such chain with an upper bound has a supremum in Ω
(i.e., Ω contains an “interval” that contains each “interval” in the chain). Zorn’s Lemma therefore
implies that Ω contains a maximal element, i.e., there exists an interval [Qmin, Qmax] ∈ Ω that is
not (properly) contained in any other interval from Ω.

Given the Novshek selection of the previous lemma, existence of an equilibrium aggregate
(hence a PSNE) is established by showing that q(Qmin) = Qmin (it is clear that any Q with
q(Q) = Q will be an equilibrium aggregate). A sketch of this proof follows next. One easily sees
that the equilibrium aggregate Qmin thus determined is the largest equilibrium aggregate (since
if Q′ ∈ Z(Q′, t) for Q′ > Qmin, the Novshek selection would have to have q(Q′) = Q′, or else
condition 1. of Definition 11 would be violated).

Lemma 3 q(Qmin) = Qmin.
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Proof. The main step in proving the existence of equilibrium consists in showing that Qmin is an
equilibrium aggregate (it is easy to see that if Qmin is an equilibrium aggregate, then the associated
backward replies form an equilibrium). Since we have q(Qmin, t) ≤ Qmin by construction, this
can be proved by showing that q(Qmin, t) < Qmin cannot happen. This step is completed by
showing that if q(Qmin, t) < Qmin holds, then q can be further extended “to the left” (and the
extension will satisfy (i)-(iii) above). This would violate the conclusion of Zorn’s Lemma that
[Qmin, Qmax] is maximal, thus leading to a contradiction. The details of this step are identical to
those in Novshek (1985) and are omitted.

We are now ready to prove the main claim of the theorem, namely that the largest equilibrium
aggregate Qmin characterized above, will be decreasing in t (for the case of the smallest equilibrium
aggregate, see the end of this subsection). The proof is non-trivial, and to make it more accessible
we shall illustrate it graphically followed by precise formal arguments in all cases. We note that
it is sufficient to establish this result for all local changes in t since if a function is decreasing at
all points, it is globally decreasing (of course, the associated equilibrium aggregate may well jump
- the argument is local only in regard to changes in t).

First, note that since hT is an increasing and continuous function, any selection q̂(Q, t) from Z
will be locally decreasing in Q if and only if it is locally decreasing in t (this follows immediately
from the definition of Bi in (25)). Likewise, such a selection q̂(Q, t) will be locally continuous in Q
if and only if it is locally continuous in t. Figures 2-5 illustrate the situation for t′ < t′′. The fact
that the direction of the effect of a change in Q and t is the same accounts for the arrows drawn.
In particular, any increasing segment on the graph of Z will be shifted up when t is increased,
and any decreasing segment will be shifted down.

Figure 2: Case I Figure 3: Case II

Figure 4: Case III Figure 5: Case IV

There are four cases: Either the graph of Z’s restriction to a neighborhood of Qmin is locally
continuous in Q (equivalently, t), and this function is decreasing in Q and t (Case I) or increasing
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in Q and t (Case II).45 Otherwise, continuity does not obtain which is the same as saying that the
equilibrium aggregate must “jump” when t is either increased from t′ to t′′ (Cases III and IV) or
decreased from t′′ to t′ [If t is decreased, case III reduces to Case I and Case IV reduces to Case
II.]

Cases III and IV are easily dealt with: If the equilibrium aggregate jumps, it necessarily jumps
down (and so is decreasing in t). The reason is that an increase in t will always correspond to the
graph of Z (locally) being shifted to “the left”(that is another way of saying that any increasing
segment will be shifted up, and any decreasing segment shifted down which was the formulation
used above). Hence no new equilibrium above the original largest one can appear, the jump has
to be to a lower equilibrium (this is also immediate in light of the figures). We now consider
the more difficult Cases I and II in turn. Throughout q̂ denotes the graph of Z’s restriction to
a neighborhood of Qmin, and Q′ and Q′′ refer to the (largest) equilibrium aggregates associated
with t′ and t′′, respectively.

Case I: In this case we have Q < Q such that q̂(Q, t) − Q > 0 and q̂(Q, t) − Q < 0, and such

that the new equilibrium aggregate Q′′ lies in the interval [Q,Q]. Since q̂ is decreasing in t, it

immediately follows that Q′′ ≤ Q′. This is what we wanted to show. Note that this observation
actually does not depend on continuity of q̂ in Q, but merely on the fact that a new equilibrium
aggregate Q′′ exists and lies in a neighborhood of Q′ in which q̂ is decreasing (in other words,
given that q̂ is decreasing, it depends solely on the fact that the aggregate does not “jump”).

Figure 6: Slope below 1 is impossible: Q′ be-
ing largest equilibrium aggregate violates that
q(Q, t) is decreasing in Q.

Figure 7: The “Novshek selection”
leading to the smallest equilibrium ag-
gregate.

Case II: When q̂ is (locally) increasing, we must have Q < Q′ < Q such that Q − q̂(Q, t) > 0

and Q − q̂(Q, t) < 0. Intuitively, this means that the slope of q̂ is greater than 1 at the point
Q′ as illustrated in Figure 3. Formally, this can be proved as follows: Assume that there exists
Q◦ > Q′ such that Q◦ − q̂(Q◦, t) ≤ 0 (intuitively this means that the slope is below unity, see
Figure 6). Then since q̂(Q◦, t) ≥ Q◦ > Q′, no Novshek selection could have reached Q′ and there
would consequently have to be a larger equilibrium Q∗, which is a contradiction.

We now prove that the equilibrium aggregate is decreasing in t: Q′′ ≤ Q′. As in the previous
case, we prove this without explicit use of continuity (the proof is straightforward if continuity
is used directly as seen in Figure 5). In particular, let us establish the stronger statement that
C(t) ≡ hT (t)+Q(t) is decreasing in t where Q(t) is the largest equilibrium aggregate given t (since
hT (t) is increasing in t, it is obvious that Q(t) must be decreasing in t if C(t) is decreasing). Define
the following function: f(C, t) = C−hT (t)−q̂(C−hT (t), t). Clearly C(t) = hT (t)+Q(t) as defined
with Q(t) an equilibrium if and only if f(C(t), t) = 0. Let C = hT (t)+Q and C = hT (t)+Q. Now

45Of course q will in these and all other cases be decreasing where it is defined as the figures also show.
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what was proved in the previous paragraph comes into play since it allows us to conclude that:
f(C, t) = Q − q̂(Q, t) > 0 and f(C, t) = Q − q̂(Q, t) < 0. Since Bi(C − hT (t), t) is independent
of t (t cancels out in the definition of the backward reply correspondence), q̂(C − hT (t), t) must
be constant in t, i.e., q̂(C − hT (t), t) = q̃(C) for some function q̃ which is increasing (since we
are in Case II). So f can be written as f(C, t) = C − hT (t) − q̃(C) where q̃ is increasing, and
consequently f will be decreasing in t and Q. Considering the solution to f(C, t) = 0 given t, i.e.,
C(t), it immediately follows that if t increases then C(t) must decrease. This finishes the proof
of the claim in Case IV.

Remark 9 The fact that the term hT (t) +Q(t) is decreasing in t implies that, in this case, when
there is entry of an additional player, the aggregate of all of the agents (including the entrant)
decreases. To see this, compare with the proof of Theorem 5 and use that the aggregate of interest
is
∑

j hj(sj) + hI+1(sI+1) (in other words, take hT (t) = hI+1(sI+1)).

Combining the observations made so far shows that the largest equilibrium aggregate is de-
creasing in t as claimed in the theorem. None of the previous conclusions depend on continuity
of q in Q, and it is straightforward to verify that the same conclusions hold regardless of whether
Q lies in a convex interval (strategy sets could be discrete, say).46 The statement for the smallest
equilibrium aggregate can be shown by an analogous argument. In particular, instead of con-
sidering the selection q(Q, t) one begins with Q sufficiently low and studies the backward reply
correspondence above the 45◦ line, now choosing for every Q the smallest best response (Figure
7). This completes the proof of Theorem 3. �

10.4 Proof of Theorem 5

Let R̃i denote the “reduced” backward reply correspondence defined by R̃i

(∑
j 6=i hj(sj), t

)
≡

Ri(s−i, t) for each i. To simplify notation, let us set i = 1 (assume that the idiosyncratic shock

hits the first player, in particular then R̃i is independent of t = t1 for all i 6= 1). Any pure-
strategy Nash equilibrium will also be a fixed point of the set-valued equilibrium problem: s1 ∈
R̃1

(∑
j 6=1 hj(sj), t1

)
and hi(si) ∈ hi ◦ R̃i

(∑
j 6=i h(sj)

)
for i = 2, . . . , I. Consider the last I − 1

inclusions, rewritten as

hi(si) ∈ hi ◦ R̃i

∑
j 6=i,1

hj(sj)

+ h1(s1)

 for i = 2, . . . , I. (26)

For given s1 ∈ S1, Theorem 3 implies that there exist a smallest and largest scalars y∗(s1) and
y∗(s1) and solutions to the I − 1 inclusions in (26) which y∗(s1) =

∑
j 6=1 hj(sj,∗) and y∗(s1) =∑

j 6=1 hj(s
∗
j ), respectively. In addition, y∗, y

∗ : S1 → R are decreasing functions.

Now combining y∗ and y∗ that solve (26) in the sense described, with s1 ∈ R̃1

(∑
j 6=1 hj(sj), t1

)
and replacing s1 with s̄1 = −s1, we obtain a system with two inclusions:

s̄1 ∈ −R̃1(y, t1)

and
y ∈ {y∗(−s̄1), y∗(−s̄1)}.

This system is ascending in (s̄1, y) in the sense of Topkis (1998), hence its smallest and largest fixed
points are decreasing in t1 (since the system is descending in t1 in the sense of Topkis). Therefore,

46See Kukushkin (1994) for the details of how the backward reply selection is constructed in such non-convex
cases.
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the smallest and largest equilibrium strategies for player 1 are increasing in t1, while the associated
aggregate of the remaining players y is decreasing in t. That the smallest and largest strategies
for player 1 do in fact correspond to the smallest and largest strategies in the original game is
straightforward to verify: Clearly, y∗(s1) and y∗(s1) are the smallest and largest aggregates of the
remaining players (across all strategy profiles compatible with an equilibrium given s1), and since

R̃1 is descending in y, the corresponding equilibrium values of s1 are, respectively, the largest and
the smallest.

Finally, it follows by construction that the corresponding aggregates of the remaining players
must be the smallest and largest for the original game. This completes the proof of the theorem.
�

10.5 Proof of Theorem 6

We begin by noting that there is no loss of generality in using the aggregator g(s) ≡
∑

i hi(si) in the
following, and assuming that minsi∈Si hi(si) = 0 for all i. To see why, recall that the local solvabil-
ity condition is independent of any strictly increasing transformation of the aggregator as well as
any coordinate shift (Remark 6). Let the original aggregator be g̃(s) = H(

∑
i h̃i(si)). We begin by

transforming strategy vectors by multiplying with a positive constant bi such that maxsi∈Si h̃i(si)−
minsi∈Si h̃i(si) = 1. Next, we use the transformation f(z) = H−1(z) −

∑
i minsi∈Si h̃i(si) to get

the new aggregator g(s) ≡ f(g̃(s)) =
∑

i hi(si), where hi(si) ≡ h̃i(si) −minsi∈Si h̃i(si). Clearly,
minsi∈Si hi(si) = 0 all i with this transformed aggregator.

Let Ri : S−i×T → Si be the best response correspondence of player i and R̃i the transformed
and reduced best response correspondence defined by R̃i(

∑
j 6=i hj(sj), t) ≡ hi ◦ Ri(s−i, t). Then

define the (transformed) backward reply correspondence Bi of player i by means of:

ηi ∈ Bi(Q, t)⇔ ηi ∈ R̃i(Q− ηi, t)

It is clear that Q is an equilibrium aggregate given t ∈ T if and only if Q ∈ Z(Q, t) ≡∑
iBi(Q, t) (the correspondence Z is the aggregate backward reply correspondence already studied

in the proof of Theorem 3).

Figure 8: η ∈ Bi(Q) [η ∈ Bi(Q+ ∆)] if and only if the solid [dashed] curve intersects the diagonal
at η.

We are going to suppress t to simplify notation in what follows. By definition, η ∈ Bi(Q) ⇔
η ∈ R̃i(Q − η). Graphically, η lies in Bi if and only if the correspondence R̃i(Q − ·) intersects

with the diagonal/45◦-line at η. A crucial feature of the graphs of R̃i(Q−·) for different values of
Q, is that these correspond to “horizontal parallel shifts” of each other. To be precise, consider
the solid curve in figure 8 which is the graph of R̃i(Q − ·) for some choice of Q. Now increase

Q to Q + ∆, ∆ > 0. Because of the additive way in which η and Q enter into R̃i, the graph of
R̃i(Q + ∆ − ·) will precisely be a parallel right shift of the graph of R̃i(Q − ·) with each point
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on the former laying precisely ∆ to the right of each point on the latter (the dotted curve in
figure 8). Similarly, if ∆ < 0, the graph will be shifted to the left in a parallel fashion. It is this
straight-forward observation that drives essentially the entire proof together with the following:
In the case where Si is of dimension greater than 1, we have by our assumptions that ηi ∈ Bi(Q, t)
if and only if Ψi(si, Q) = 0 for some si ∈ Si with ηi = hi(si). When Si ⊆ R, a similar statement
is valid for any ηi in the interior of Si: ηi ∈ Bi(Q, t) ⇔ Ψi(ηi, Q) = 0. Crucially, even if we are in
the one-dimensional case where it is possible that ηi ∈ Bi(Q) is on the boundary of Si without the
first-order conditions holding, we may because of the uniform local solvability condition assume
without loosing generality that ηi ∈ Bi(Q) ⇔ Ψi(ηi, Q) = 0. The verification of this claim is
somewhat technical and is placed in a footnote.47

Lemma 4 The correspondence R̃i : [0,
∑

j 6=i maxsj∈Sj hj(sj)] → 2Si will be single-valued except
possibly at isolated points.

Proof. R̃i has convex values since so does Ri. To arrive at a contradiction, assume that there
exists an open interval (a, b) ⊆ [0,

∑
j 6=i maxsj∈Sj hj(sj)] upon which R̃i is not single-valued. From

upper hemi-continuity of R̃i follows that there exist Qa < Qb both in (a, b) and an interval [c, d] ⊆
[0,maxsi∈Si hi(si)] such that [c, d] ⊆ R̃i(Q) for all Qa ≤ Q ≤ Qb. Evidently, xi ∈ R̃i(Q+ xi − xi)
hence xi ∈ Bi(Q + xi), for all xi ∈ [c, d] and all Qa ≤ Q ≤ Qb. But now fix Q ∈ (Qa, Qb) and
xi ∈ (c, d) and let M = {x′i ∈ [c, d] : Q′ + x′i = Q + xi for some Q′ ∈ [Qa, Qb]} which is a closed
interval (not a point!). By construction M ⊆ Bi(Q+xi), hence for all m ∈M : Ψi(si, Q+xi) = 0
for some si ∈ Si with hi(si) = m. But the local solvability condition implies in particular
that 0 is a regular value for Ψi(·, Q + xi) which in turn implies that the number of solutions to
Ψi(·, Q + xi) = 0 is finite (Milnor (1965), p.8). But since for each m in a (convex) interval we
have some si ∈ Si such that hi(si) = m and Ψi(si, Q + xi) = 0, the equation Ψi(·, Q + xi) = 0
must have uncountably many solutions. A contradiction.

The next Lemma’s proof is based on the implicit function theorem together with repeated use
of Lemma 4.

Lemma 5 Any selection from Bi(Q) is locally isolated.

Proof. η′i ∈ Bi(Q′) ⇒ [Ψi(s
′
i, Q
′) = 0 for some s′i ∈ Si with hi(s

′
i) = η′i]. By local solvability

|DsiΨi(s
′
i, Q
′)| 6= 0 which by the implicit function theorem implies the existence of a locally unique,

differentiable function fi : (Q′−ε,Q′+ε)→ Si such that Ψi(fi(Q), Q) = 0 for allQ ∈ (Q′−ε,Q′+ε),
and such that fi(Q

′) = s′i. The statement of the lemma does not follow directly from this, however,
because we may have two different solutions to Ψi(·, Q′) = 0: Ψi(si, Q

′) = 0 and Ψi(s̃i, Q
′) = 0,

si 6= s̃i with η′i ≡ hi(si) = hi(s̃i). Intuitively, the problem here is that local uniqueness in terms
of si does not (seem!) to imply local uniqueness in terms of ηi = hi(si) as stated in the lemma.

47Consider such η′i ∈ Bi(Q
′). Clearly either η′i = 0 or η′i = maxSi. Take η′i = 0 (the proof is the same in

either case). Let [Qa, Qb], Q ∈ [Qa, Qb] be the maximal interval (necessarily closed) for which {0} ∈ Bi(Q) all
Q ∈ [Qa, Qb]. It is easy to see that we must have Ψi(0, Q

a) = Ψi(0, Q
b) = 0. This is because by varying Q either

below Qa [or above Qb] we get a continuous, non-constant extension bi(Q) ∈ Bi(Q) with bi(Q
a) = 0 [bi(Q

b) = 0].
In particular, such an extension must lie in the interior of Si for Q 6= Qa [Q 6= Qb]. But then Ψi(bi(Q), Q) = 0 for
all Q 6= Qa, and by continuity of bi and Ψi follows that Ψi(0, Q

a) = 0 [Ψi(0, Q
b) = 0 respectively]. Importantly,

by uniform local solvability DsiΨi(0, Q
a) < 0 and DsiΨi(0, Q

b) < 0. We may therefore replace Ψi with a function
such that (i) Ψi(0, Q) = 0 for all Q ∈ [Qa, Qb] and (ii) DsiΨi(0, Q) < 0 all Q and is continuous. Note that any
such “replacement” of Ψi is unproblematic for our arguments, except that it must be well-defined and continuously
differentiable (C1) or else our results will break down, in particular any application of the implicit function theorem
requires that such a replacement is C1 [and this is where uniform local solvability comes in: without it we might
have DsiΨi(0, Q

a) > 0 and DsiΨi(0, Q
b) < 0 and so any replacement as above would have to “cross 0” violating

the local solvability condition].
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Since si, s̃i ∈ Ri(Q′ − η′i), the above situation can of course only arise if Ri is not single-valued

at Q′ − η′i. In fact, it can only happen if R̃i is not single-valued at Q′ − η′i since otherwise
ηi = hi(si) for all si ∈ Ri(Q′ − η′i) (a convex set), which definitely contradicts local uniqueness of
solutions to Ψi(·, Q′) = 0. Now, when such multiplicity in terms of si arises, the implicit function

theorem will give us two functions fi and f̃i such that Ψi(fi(Q), Q) = 0, Ψi(f̃i(Q), Q) = 0, and

fi(Q) 6= f̃i(Q) for Q close to Q′ (in addition, fi(Q
′) = si and f̃i(Q

′) = s̃i). Since hi, fi and f̃i
are differentiable at Q′, Q − hi(fi(Q)) and Q − hi(f̃i(Q)) will obviously be differentiable at Q′.
Neither term can be constant in Q: If this were the case for, say, Q − hi(fi(Q)) we would have

hi(fi(Q)), η′i ∈ R̃i(Q− hi(fi(Q)) = R̃i(Q
′ − η′i) where necessarily hi(fi(Q)) 6= hi(fi(Q

′)) = η′i (for
Q − hi(fi(Q)) to be locally constant at Q′, fi(Q) obviously cannot be locally constant at Q′).

This violates the fact that R̃i can only be multi-valued at isolated points. From this follows that
Q−hi(fi(Q)) (Q−hi(f̃i(Q))) will either be strictly increasing or strictly decreasing locally at Q′.

But then we can for any Z close to Q′ − η′i find Q and Q̃ such that Z = Q− fi(Q) = Q̃− f̃i(Q̃),

and since fi(Q), f̃i(Q̃) ∈ R̃i(Z), R̃i must be multi-valued not just at Q′ − η′i but also at any Z

close to Q′−η′i. This once again contradicts the fact that R̃i must be singe-valued except possibly
at isolated point.

Lemma 6 Bi(Q) consists of at most a single element.

Proof. As is clear graphically, if Bi(Q) is not single-valued for some Q, there must lie at least one

point (xi, yi) on the graph of R̃i(Q−·) ((xi, yi), yi ∈ R̃i(Q−xi)) with the property that a line with
slope +1 intersects the graph precisely at (xi, yi) and everywhere else in a neighborhood either

lies below or above the graph. Since yi ∈ R̃i(Q+yi−(xi+yi)), it follows that xi+yi ∈ Bi(Q+yi).

But either raising or lowering Q will now lead to two continuous selections from Bi, bi and b̃i say,
both of which satisfy bi(Q+ yi) = b̃i(Q+ yi). This contradicts lemma 5.

In the following, let bi be the function such that Bi(Q) = {bi(Q)} (of course, bi(Q) is only well-

defined if Bi(Q) 6= ∅). Let θi ≡ max R̃i(0) and ρi ≡ min R̃i(xi) where xi ≡
∑

j 6=i maxsj∈Sj hj(sj).

Since θi ∈ R̃i(θi − θi) and ρi ∈ R̃i(xi + ρi − ρi), we must have bi(θi) = θi and bi(xi + ρi) = ρi. It
can never be the case that xi + ρi = θi.

48 Hence the previous constructions marks two different
points on the backward reply function bi. Assume first that θi < xi + ρi. Then the graph of
R̃i(xi+ρi−η) must lie strictly below the 45◦ line for all η > ρi since if not it would lie everywhere
above the diagonal, which would imply that Bi(θi) = ∅ (observe that we are here using that

Bi is single-valued since this implies that R̃i(Q − ·) cannot intersection with the 45◦-line twice).

Likewise, the graph of R̃i(θi − η) must lie completely above the 45◦-line for η < θi, otherwise
we would have Bi(xi − ρi) = ∅. In case θi > xi + ρi, the “dual” conclusions apply for the same

reasons (by “dual” we mean that R̃i(xi + ρi − η) lies above the 45◦ line for η > ρi and R̃i(θi − η)
lies below the 45◦-line for η < θi). From now on we are going to focus on the first of the above
cases where θi < xi + ρi (all arguments immediately carry over to the case where θi > xi + ρi).

The next three conclusions follow immediately from the fact that a change in Q, from Q to
Q + ∆ say, corresponds to an exact parallel shift of the graph of R̃i(Q − ·) either to the left
∆ < 0 or to the right ∆ > 0. First, we see that Bi(Q) = ∅ for all Q 6∈ [θi, xi + ρi]. Secondly,
we see that Bi(Q) 6= ∅ for all Q ∈ [θi, xi + ρi], so on this interval the function bi is actually

well-defined. Finally, we see that min R̃i(Q − ηi) > ηi for ηi < bi(Q) and max R̃i(Q − ηi) < ηi
for ηi > bi(Q). Graphically, this last observation means that bi(Q) corresponds to a point where

R̃i(Q− ·) intersects with the 45◦-line “from above”.

48If θi = xi + ρi then clearly ρi < θi. In addition, ρi ∈ R̃i(xi + ρi − ρi) = R̃i(θi − ρi) hence θi, ρi ∈ Bi(θi)
contradicting that Bi is single-valued.
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Let θ = maxi θi and δ = mini[xi + ρi]. It is clear that,

z(Q) =
∑
i

bi(Q),

is a well-defined and continuous function precisely on the interval [θ, δ] and that z(θ) ≥ θ and
z(δ) ≤ δ. We have suppressed t from the previous exposition. When t is included, all of the
conclusions still hold of course only now we must write z(Q, t) =

∑
i zi(Q, t) and this will be well-

defined for all Q ∈ [θ(t), δ(t)], where both θ(t) and δ(t) are increasing in t (that these are increasing
in t follow directly from the definition of these together with the definition of a positive shock).
Taking t ∈ T = [a, b], it is convenient to extend z(·, t) such that this is defined on [θ(a), δ(b)] for
all t. We do so simply by taking z(Q, t) = z(θ(t), t) for all θ(a) ≤ Q < θ(t) and z(Q, t) = z(δ(t), t)
for I − 1 + ρ(b) ≥ Q ≥ δ(t). Crucially, this will not introduce any new equilibrium aggregates
since z(Q, t) = z(θ(t), t) > Q for all Q < θ(t), and Q < z(Q, t) = z(δ(t), t) for all Q > δ(t). We
now have:

Lemma 7 z(Q, t) is increasing in t.

Proof. Due to the way the extension of z was made above (in particular, the fact that θ(t) and δ(t)
are both increasing in t), the conclusion immediately follows if we can show that each bi(Q, t) is

increasing in t. bi(Q, t) corresponds to the intersection between R̃i(Q−·, t) and the 45◦-line where

R̃i(Q− ηi) is strictly above (below) the 45◦-line for ηi < bi(Q) (ηi > bi(Q)). By assumption, t is a

positive shock in the sense that the smallest and largest selections of R̃i(Q− ηi, t) are increasing
in t (for all fixed Q and ηi). Moreover, the smallest (respectively, the largest) selection from
an upper hemi-continuous correspondence with range R is lower semi-continuous (respectively,
upper semi-continuous).49 In particular, the least selection is “lower semi-continuous from above”
and the greatest selection is “upper semi-continuous from below”. Combining we see that the
correspondence R̃i(Q − ηi, t) − {ηi} satisfies all of the conditions of Corollary 2 in Milgrom and
Roberts (1994). This allows us to conclude that bi(Q, t) is increasing in t.

To summarize, Q∗(t) is an equilibrium aggregate given t if and only if z(Q∗(t), t) = Q∗(t). In
addition, we have proved that z(Q, t) is continuous in Q and increasing in t. Finally, recalling
the definitions of θ(a) and θ(b) from above, we have that z : [θ(a), δ(b)] × T → R satisfies
z(θ(a), t) ≥ θ(a) and z(δ(b), t) ≤ δ(b) for all t. The conclusion of the Theorem now follows from
the same argument we used at the end of the proof of the previous lemma (alternatively, it also
follows from the simpler version of this result that applies to the continuous function z(Q, t)−Q,
see e.g. Villas-Boas (1997)).

10.6 Proof of Theorem 7

The statement is proved only for the smallest equilibrium aggregate (the proof for the largest
aggregate is similar). Let bm′ be the least backward reply map as described in the proof of
Theorem 6. Let us define t(I+1) = s∗I+1 ∈ RN+ (i.e., as equal to the entrant’s equilibrium strategy)
and t(I) = 0. Then Q∗(I) and Q∗(I + 1) are the least solutions to, Q(I) = g(b(Q(I)), t(I)) and
Q(I + 1) = g(b(Q(I + 1)), t(I + 1)), respectively. Since g is increasing in t and t(I) ≤ t(I + 1),
this is a positive shock to the aggregate backward reply map. That Q∗(I) ≤ Q∗(I + 1) must hold
then follows by the same arguments as in the proof of Theorem 6. Clearly, Q∗(I) = Q∗(I + 1)
cannot hold unless t(I) = t(I + 1) since g is strictly increasing. �

49Let F : X → 2R be such a correspondence, and f∗ and f∗ the smallest and largest selections, i.e., f∗(x) ≡
maxz∈F (x) z and f∗(x) ≡ −[maxz∈−F (x) z]. Since the value function of a maximization problem is upper semi-
continuous when the objective function is continuous and the constraint correspondence is upper hemi-continuous,
it follows that f∗ is upper semi-continuous and moreover f̃∗(x) = maxz∈−F (x) z is upper semi-continuous, thus

implying that f∗ = −f̃∗ is lower semi-continuous.
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10.7 Proof of Proposition 1

We begin by verifying the uniform local solvability condition. Direct calculations yield

Ψi(si, Q) = Vi ·

[
h′i (si)

R+Q
−
H ′
(
H−1(Q)

)
h′i(si)hi(si)

(R+Q)2

]
− c′i (si) ,

and

DsiΨi =
Vih
′′
i (si)

h′i(si)
·

[
h′i(si)

R+Q
−
H ′
(
H−1(Q)

)
h′i(si)hi(si)

(R+Q)2

]

−c′′i (si)− Vi
H ′
(
H−1(Q)

)
(h′i(si))

2

(R+Q)2
.

Therefore, when Ψi(si, Q) = 0, we have

DsiΨi =
h′′i (si)

h′i(si)
c′i (si)− c′′i (si)− Vi ·

H ′
(
H−1(Q)

)
(h′i(si))

2

(R+Q)2
.

Dividing both sides by c′i(si) > 0, we conclude that DsiΨi < 0 whenever Ψi = 0. Thus the
uniform local solvability condition is satisfied.

Next, consider the payoff function of player i after the change of coordinates si 7→ zi =

hi(si) (for i ∈ I): π̃i(z) = Vizi

[
R+H(

∑I
j=1 zj)

]−1
− c̃i(zi). It is straightforward to verify that

c̃i = ci ◦ h−1i is a convex function under our hypotheses, and using this it may be verified that
Dzi π̃i(z) = 0 implies that D2

z2i
π̃i(z) < 0. Hence any interior extremum is a strict maximum, from

which follows that there is at most one extremum, necessarily a global maximum (it is possible
that this maximum is on the boundary, but in this case it continues to be unique; see also Remark
3). Since the previous change of coordinates is a diffeomorphism, the previous conclusion carries
over to the original payoff functions: In particular, the first-order conditions will be sufficient for
a maximum which is what we need in order to apply our results (again, see Remark 3).

Now, parts 1 and 2 the proposition follow directly from Theorems 6 and 7. Part 3 follows
from Theorem 8 by noting that the condition for s∗i (t) to be locally increasing in a positive shock
t is

−[DsiΨi(s
∗
i , g(s∗), t)]−1DQΨi(s

∗
i , g(s∗), t) ≥ 0. (27)

Since, as shown above, DsiΨi(s
∗
i , g(s∗), t) < 0, (27) holds if and only if DQΨi(s

∗
i , Q

∗, t) ≥ 0 where
Q∗ = g(s∗). For the same reason, the condition for s∗i (t) to be decreasing in t when t does not
directly affect player i (the second statement of part 3), is satisfied is and only if DQΨi(s

∗
i , Q

∗) ≤ 0.
Since,

DQΨi(s
∗
i , Q

∗, t) = Vi ×[
− h′i (s∗i )

(R+Q∗)2
+

2H ′
(
H−1(Q∗)

)
h′i(s

∗
i )hi(s

∗
i )

(R+Q∗)3
−
H ′′
(
H−1(Q∗)

)
(H−1)′(Q∗)h′i(s

∗
i )hi(s

∗
i )

(R+Q∗)2

]
,

(27) will hold if and only if

hi(s
∗
i ) ≥ η(Q∗),
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where

η(Q∗) ≡

[
2H ′

(
H−1(Q∗)

)
(R+Q∗)

−
H ′′
(
H−1(Q∗)

)
H ′ (H−1(Q∗))

]−1
.

This shows that player i will increase its effort if it is “dominant” as defined in the proposition. If
instead hi(s

∗
i ) ≤ η(Q∗), i.e., if the player is not “dominant”, DQΨi(s

∗
i , Q

∗) ≤ 0 and by Theorem
8 follows that if the player is not affected by the shock, she will decrease her effort in equilibrium.
�

10.8 “Perverse” Comparative Statics Results in the Model of Section 5.4

Here we provide a specific example with strategic substitutes where the local solvability condition
is violated. As will be seen, this leads to “perverse” comparative statics outcomes.

Figure 9: Backward reply correspondences
(dashed). Aggregate backward reply correspon-
dence (solid).

Figure 10: A decrease in marginal costs for the
second firm leads to a decrease in aggregate out-
put from Q′ to Q′′.

Suppose that there are only two firms and P (Q) = K −Q for some constant K > 0. Suppose
also that firm 1’s costs are given by 0.5q21(α1 − a1) + C1(a1) for some differentiable, strictly
increasing and strictly convex function C1. This implies that its payoff function is

πi(q, a) = [K −Q]q1 − 0.5q21(α1 − a1)− C1(a1).

The first-order conditions for firm 1 can be written as,

K −Q− q1 − q1(α1 − a1) = 0, and 0.5q21 = C ′1(a1).

Since C1 is strictly increasing, (C ′1)
−1 is well-defined. (C ′1)

−1 is strictly increasing since C1 is
strictly convex (and conversely, when (C ′1)

−1 is strictly increasing, C1 must be strictly convex). Let
us define G1(z) ≡ (C ′1)

−1(0.5z2) which will also be strictly increasing. Choosing G1 is equivalent
to choosing C1. Let

G1(q1) = −δ1q21 + γ1q1 + β1,

where γ1, δ1 > 0, and β1 < 2, so that the best responds choice of quantity for firm 1 becomes the
solution to the following cubic equation:

K −Q+ (β1 − 1− α1)q1 − δ1q31 + γ1q
2
1 = 0. (28)

Figure 9 plots q1 as a function of Q for a particular choice of parameters (the dashes “inverse-S”
shaped curve). The second dashed curve (the negatively sloped line) shows the same relationship
for firm 2 (q2 as a function of Q). Concretely, firm 2’s cost function is assumed to take the form:

[α2 + 0.5β2q
2
2 − γ2(a2)

1/2] + δ2a2. This yields a simple linear relationship between Q and q2:
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0 = K − Q − β2q2. The solid line in the figure is the aggregate backward reply correspondence
which shows q1 + q2 as a function of Q (the sum of the two dashed curves).50

A Cournot equilibrium is given by the solid curve’s intersection with the 45◦-line in Figure
9. Figure 10 depicts the same aggregate backward reply correspondence as in Figure 9 (solid),
together with a similarly constructed aggregate backward reply correspondence (dashed). The
only difference between the two’s parameter values is that for the dashed curve β2 is lower.51

Naturally, a reduction in β2 corresponds to a reduction in the marginal cost of firm 2. The figure
shows that such a decrease in marginal costs reduces aggregate output Q. It can also be verified
for the parameters here, the two firms’ payoff/profit functions are strictly concave (even though
the cost function of firm 1 is not convex).

10.9 Proof of Theorem 10

We begin with a technical lemma:

Lemma 8 Suppose Assumption 1 holds. Then:

(i)
[
DsiΨi

(
si,
∑I

j=1 sj , t
)]−1

exists and all of its elements are non-positive; and

(ii) D2
sisiΠi

(
si,
∑I

j=1 sj , t
)

is negative definite.

Proof. For a matrix A with non-negative off-diagonal entries the following four statements are
equivalent (see Berman and Plemmons (1994), pages 135-136): (1) all eigenvalues of A have
negative real parts; (2) all real eigenvalues of A are negative; (3) there exists a vector x ∈ RN++

such that Ax ∈ RN−−; (4) A−1 exists and all of its elements are non-positive.
It is clear from (20) that if D2

sisiΠi has non-negative off-diagonal entries and DQΨi is non-
positive, then DsiΨi must have non-negative off-diagonal entries. By assumption, all real eigenval-
ues of
DsiΨi

(
si,
∑I

j=1 sj , t
)

are negative, hence (4) holds verifying the first claim of the lemma. For

the second claim, we use that (3) holds for DsiΨi, and let x ∈ RN++ be such that DsiΨi · x ∈
RN−−. Clearly DQΨi · x ∈ RN− because DQΨi is non-positive. Hence from (20) follows that

D2
sisiΠi

(
si,
∑I

j=1 sj , t
)
x ∈ RN−−. But then (since D2

sisiΠi has non-negative off-diagonal elements)

all of its eigenvalues have negative real parts, and being symmetric it is therefore negative definite.

Next note that since DQb = −[DsiΨi]
−1DQΨi, part (i) of Lemma 8 implies that the backward

reply function b is decreasing in Q (since DQΨi is a non-positive matrix in view of the fact that
the payoff function exhibits decreasing differences).

Finally, to establish the main result, differentiate Q = b(Q+ t) to obtain:

dQ = DQb(Q+ t)dQ+DQb(Q+ t)dt.

Since DQb(Q+ t) is non-singular, this is equivalent to

[[DQb(Q+ t)]−1 − I]dQ = dt.

50The specific set of parameter values yielding the configuration in Figure 9 are: K = 4, β1 − 1 − α1 = −4.4,
γ1 = 2.5, δ1 = 0.4, and β2 = 40. Note that given these parameter values G1 will be strictly increasing (C1 will be
strictly convex) whenever q1 < 3.125. It is also straightforward to verify that any perturbation of these parameters
leads to the same comparative static results, so that this perverse comparative static is “robust”.

51Concretely, β2 = 10 for the dashed curve and β2 = 40 for the solid curve.
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The sufficiency part of the theorem will follow if we can show that dt ≥ 0 ⇒ dQ ≤ 0. By the
previous equation, this is equivalent to: [[DQb(Q + t)]−1 − I]dQ ≥ 0 ⇒ dQ ≤ 0. An alternative
(but again equivalent) way of writing this is,

[I− [DQb(Q+ t)]−1]dQ ≥ 0 ⇒ dQ ≥ 0 . (29)

The statement in (29) is very well known in matrix algebra: a matrix A such that Ax ≥ 0⇒ x ≥ 0
is called a monotone matrix (Berman and Plemmons (1994)). A well known result from matrix
algebra tells us that a matrix is monotone if and only if it is a non-singular M -matrix (Berman
and Plemmons (1994), page 137). Since [I− [DQb(Q+ t)]−1] is non-singular by assumption, it is
a non-singular M -matrix when it is an M -matrix (as assumed in the theorem). Hence, it will be
monotone and so any small increase in t (in one or more coordinates) will lead to a decrease in
each of Q’s coordinates.

As for the theorem’s necessity statement, assume that [I−[DQb(Q+t)]−1] is not an M -matrix.
By the result just used, this is the same as saying that [I − [DQb(Q + t)]−1] is not monotone,

which implies that dQ 6≤ 0 and [I − [DQb(Q + t)]−1]dQ ≤ 0 for at least one vector dQ ∈ RN .
We cannot have [I − [DQb(Q + t)]−1]dQ = 0 since I − [DQb(Q + t)]−1 is non-singular; hence
[I − [DQb(Q + t)]−1]dQ < 0 for some such vector dQ 6≤ 0. Now we simply pick t′′ − t′ = dt =
−[I−[DQb(Q+t)]−1]dQ > 0 and the associated change in the aggregate dQ will then be increasing
in at least one coordinate/component, which is the statement of the theorem. �

10.10 Proof of Proposition 6

We begin by verifying Assumption 1. We have,

Ψi =

(
P ′ (Q) qi + P (Q)− ∂ci(qi,ai)

∂qi

−∂ci(qi,ai)
∂ai

− ∂Ci(ai,A)
∂ai

− ∂Ci(ai,A)
∂A

)
,

and therefore,

D(qi,ai)Ψi =

 P ′ (Q)− ∂2ci
∂q2i

− ∂2ci
∂qi∂ai

− ∂2ci
∂qi∂ai

−∂2ci
∂a2i
− ∂2Ci

∂a2i
− ∂2Ci

∂ai∂A

 , and

D(Q,A)Ψi =

(
P ′′ (Q) qi + P ′(Q) 0

0 − ∂2Ci
∂ai∂A

− ∂2Ci
∂A2

)
.

The convexity of cost functions and condition 1 in the proposition ensure that the eigenvalues
of D(qi,ai)Ψi are both real and negative, so strong solvability is satisfied.52 Strategic substitutes
holds since, in view of condition 2, D(Q,A)Ψi is a non-positive matrix, and the sum of D(Q,A)Ψi and
D(qi,ai)Ψi has a non-negative diagonal. This verifies that the technology adoption game satisfies
Assumption 1.

To apply (the sufficiency part of) Theorem 10, we must establish that the matrix I− [DQb(Q+
t)]−1 is an M -matrix. In the case of two aggregates, this is the case when the determinant of

52In particular,

D(qi,ai)Ψi =

 − ∂
2ci
∂q2i

− ∂2ci
∂qi∂ai

− ∂2ci
∂qi∂ai

− ∂
2ci
∂a2i

+

(
P ′ 0

0 − ∂
2Ci

∂a2i
− ∂2Ci

∂ai∂A

)
,

and each of these is negative semidefinite and one of them is negative definite.
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DQb(Q, t) is positive. By (22), DQb(Q, t) =
∑I

j=1DQbj(Q, t), and since the sum of negative quasi-

definite matrices is negative quasi-definite (see Remark 8), a sufficient condition for DQb(Q, t) to
be an M -matrix is that each of the matrices DQbj(Q, t) is negative quasi-definite. Using (21):

DQbi(Q, t) = −[DsiΨi(bi(Q, t), Q, t)]
−1DQΨi(bi(Q, t), Q, t) =

− 1

∆

 (−∂2ci
∂a2i
− ∂2Ci

∂a2i
− ∂2Ci

∂ai∂A
)(P ′′ (Q) qi + P ′(Q)) ∂2ci

∂qi∂ai
(− ∂2Ci

∂ai∂A
− ∂2Ci

∂A2 )

∂2ci
∂qi∂ai

(P ′′ (Q) qi + P ′(Q)) (P ′ (Q)− ∂2ci
∂q2i

)(− ∂2Ci
∂ai∂A

− ∂2Ci
∂A2 )


Where ∆ > 0 denotes the determinant of D(qi,ai)Ψi. Moreover, DQbi is negative quasi-definite

if and only if [DQbi + (DQbi)
T ]/2 is negative definite. This will be the case if and only if the

determinant of [DQbi + (DQbi)
T ]/2 is positive, or equivalently, if and only if

(
∂2ci
∂a2i

+
∂2Ci
∂a2i

+
∂2Ci
∂ai∂A

)(−P ′ + ∂2ci
∂q2i

)(P ′′qi + P ′)(− ∂2Ci
∂ai∂A

− ∂2Ci
∂A2

) >

(
∂2ci
∂qi∂ai

)2[
1

2
(P ′′qi + P ′ − ∂2Ci

∂ai∂A
− ∂2Ci
∂A2

)]2.

A sufficient (though not necessary) condition for this inequality to hold is that:

∂2ci
∂a2i

∂2ci
∂q2i

( ∂2ci
∂qi∂ai

)2
≥

[12(P ′′qi + P ′ − ∂2Ci
∂ai∂A

− ∂2Ci
∂A2 )]2

(P ′′qi + P ′)(− ∂2Ci
∂ai∂A

− ∂2Ci
∂A2 )

,

which is ensured by condition 3 in the proposition.
The remaining conclusions of the Proposition follow directly from Theorems 11 and 12. �

10.11 Proof of Theorem 13

We begin with Theorem 6. To simplify the notation in the proof, let us focus on the case with
a linear aggregator, g(s) =

∑I
j=1 sj (the general case is proved by the exact same argument, the

only difference is that it becomes very notation-heavy). Then, for each i, Gi(Q, y) = Q−y. Define

Mi(y, t) ≡ arg maxQ≥y Πi(Q− y,Q). Clearly, Mi(y, t)−{y} = R̃i(y, t), where R̃i is the “reduced”
best response correspondence (i.e., best response as a function of the sum of the opponents’

strategies). Hence, we can write Mi(Q − si, t) − {Q} = R̃i(Q − si, t) − {si}. Given single-
crossing, Mi(y, t) is ascending in y (e.g., Milgrom and Shannon (1994), Theorem 4). Therefore,

R̃i(Q − si, t) − {si} must be descending in si. Moreover, R̃i(Q − si, t) − {si} is convex-valued.

Let Bi(Q, t) = {si ∈ Si : si ∈ R̃i(Q− si, t)}. Bi(Q, t) 6= ∅ since: z ∈ R̃i(Q−⊥i, t) ⇒ z −⊥i ≥ 0

(where ⊥i ≡ minSi), while z ∈ R̃i(Q−>i, t) ⇒ z −>i ≤ 0.53 It may be verified that Bi(Q, t) is
always a convex set (possibly a singleton), and that the least and greatest selections of Bi(Q, t)
are increasing in t (this follows from the same argument used in the proof of Lemma 7).

53Here it is necessary to extend R̃i by defining R̃i(z) = {R̃i(0)} when z < 0, where we have here taken ⊥j = 0
for all j so that the least value Q can assume is 0. It is clear that with this extension R̃i(Q − si) − {si} is (still)
descending and now always passes through 0. Importantly, the extensions (one for each agent), do not introduce
any new fixed points for B =

∑
j Bj : Given Q, if si ∈ R̃i(Q− si), then either Q− si ≥ 0 or Q < si ∈ R̃i(Q− si).

But if si > Q for just one i, we cannot have
∑
j sj = Q.
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We can now again use the argument used in the proof of Lemma 7, in order to conclude that
the smallest and largest fixed points of the convex valued, upper hemi-continuous, and ascending
in t correspondence B(Q, t) =

∑
j Bj(Q, t), are increasing in t. This establishes Theorem 6.

The proof of Theorem 7 applies to the present case (the only difference being that we now have a
convex-valued aggregate backward reply correspondence, B =

∑
j Bj). Finally, Theorem 8 follows

from the implicit function theorem together with Theorem 6. �
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