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Abstract

In aggregative games, each player’s payoff depends on her own actions and an aggregate of the actions
of all the players. Many common games in industrial organization, political economy, public economics, and
macroeconomics can be cast as aggregative games. This paper provides a general and tractable framework
for comparative static results in aggregative games. We focus on two classes of games: (1) aggregative
games with strategic substitutes and (2) nice aggregative games, where payoff functions are continuous and
concave in own strategies. We provide simple sufficient conditions under which positive shocks to individual
players increase their own actions and have monotone effects on the aggregate. The results are illustrated
with applications to public good provision, contests, Cournot competition and technology choices oligopoly.
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1. Introduction

In aggregative games, each player’s payoff depends on her own actions and some aggregate of all players’
actions. Numerous games studied in the literature can be cast as aggregative games including models
of competition (Cournot and Bertrand with or without product differentiation), patent races, models of
contests and fighting, public good provision games, and models with aggregate demand externalities.1 In
this paper, we provide a simple general framework for comparative static analysis in aggregative games (thus
generalizing Corchón [7] which is discussed in greater detail below). Our approach is applicable to a diverse
set of applications that can be cast as aggregative games and enables us to provide sufficient conditions for
a rich set of comparative static results.

We present results for two sets of complementary environments. First, we focus on aggregative games
with strategic substitutes. In games with strategic substitutes, each player’s payoff function is supermodular
in her own strategy and exhibits decreasing differences in her own strategy and the strategy vector of other
players. Second, we turn to “nice” aggregative games, where payoff functions are continuous, concave (or
pseudo-concave) in own strategies, and twice continuously differentiable. For such games, we prove a number
of results under a condition which we refer to as local solvability which ensures the local invertibility of the
backward reply correspondence described further below.

IWe would like to thank Roger Hartley, Jean-Francois Mertens, Alex Possajennikov, Burkhard Schipper, Xavier Vives,
an Editor, and three anonymous referees for their helpful remarks and suggestions. Thanks also to seminar participants at
the University of Copenhagen, University of Manchester, and at the Midlands Game Theory Workshop in Birmingham. All
remaining errors are of course our responsibility.

1For a long list of examples of aggregative games see Alos-Ferrer and Ania [3]. For more specific applications, see e.g. Cornes
and Hartley [8, 10], Kotchen [21], and Fraser [14]. Issues of evolutionary stability (Alos-Ferrer and Ania [3], Possajennikov
[31]), evolution of preferences (Kockesen et al. [20]), existence and stability (Dubey et al. [13] and Jensen [18]), and uniqueness
of equilibrium (Cornes and Hartley [9]) have also been studied fruitfully in the context of aggregative games.
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An informal summary of our results from both aggregative games with strategic substitutes and from
nice aggregative games is that, under a variety of reasonable economic conditions, comparative statics are
“regular” (for example, in Cournot oligopoly, a reduction in the marginal cost increases a firm’s output).
More precisely, in nice aggregative games with local solvability, a “positive shock” to any subset of players
— defined as a change in parameters that increase the marginal payoff of the subset of players — increases
the aggregate, and entry of a new player also increases the aggregate. In aggregative games with strategic
substitutes, a positive shock to a player increases that player’s strategy and reduces the aggregate of the
remaining players’ strategies, and entry of a new player reduces the aggregate of the strategies of remaining
players. In addition, in aggregative games with strategic substitutes, the aggregate varies monotonically
with what we call “shocks that hit the aggregator” which are changes in parameters that have a direct
(positive) impact on the aggregator. In a separate section (Section 5), we illustrate all of these results in a
variety of economic models, highlighting both the broad applicability of the methods we propose and adding
several new results and insights.

We should emphasize at this point that there is no guarantee in general that intuitive and unambiguous
comparative static results should hold in aggregative games. Take an increase in a player’s marginal payoff
such as a reduction in an oligopolist’s marginal cost: Even though the first-order effect of such a shock will of
course be positive, it is possible that higher-order effects go in the opposite direction so that in equilibrium,
the player ends up lowering her strategy and the aggregate falls (see Acemoglu and Jensen [2] for an example
of this kind). In this light, a major contribution of our paper is to provide minimal conditions to ensure that
such higher-order effects do not dominate so that comparative statics becomes “regular”. In particular, our
first set of theorems shows that such “perverse” outcomes cannot arise in aggregative games with strategic
substitutes, and our second set of results establishes that they can be ruled out in nice aggregative games
by the local solvability condition mentioned above.

Our paper is related to a number of different strands in the literature. Comparative static results in most
games are obtained using the implicit function theorem. The main exception is for supermodular games
(games with strategic complements). Topkis [40, 41], Milgrom and Roberts [26] and Vives [46] provide a
framework for deriving comparative static results in such games. These methods do not extend beyond
supermodular games.

More closely related to our work, and in many ways its precursor, is Corchón [7]. Corchón [7] provides
comparative static results for aggregative games with strategic substitutes, but only under fairly restrictive
conditions, which, among other things, ensure uniqueness of equilibria. In contrast, our comparative static
results for aggregative games with strategic substitutes are valid without any additional assumptions. An-
other similarity between our paper and Corchón [7] is that both make use of the so-called backward reply
correspondence of Selten [37]. In an aggregative game, the backward reply correspondence gives the (best
response) strategies of players that are compatible with a given value of the aggregate.2 In a seminal paper,
Novshek [30] used this correspondence to give the first general proof of existence of pure-strategy equilib-
ria in the Cournot model without assuming quasi-concavity of payoff functions (see also Kukushkin [22]).
Novshek’s result has since been strengthened and generalized to a larger class of aggregative games (e.g.,
Dubey et al. [13] and Jensen [18]), and our results on games with strategic substitutes utilize Novshek [30]’s
construction in the proofs.3 Our results on nice aggregative games blend the backward reply approach with
the equilibrium comparison results reported in Milgrom and Roberts [27] and Villas-Boas [44].

An alternative to working directly with backward reply correspondences as we do, is to use “share
correspondences” introduced by Cornes and Hartley [8]. The share correspondence is the backward reply

2The first systematic study of aggregative games (German: aggregierbaren Spiele) can be found in Selten [37]. After defining
aggregative games, Selten proceeds to define what he calls the Einpassungsfunktion (Selten [37], p. 154), that is, the backward
reply function of an individual player. As Selten proves, the backward reply correspondence is single-valued (a function)
provided that the player’s best-response function has slope greater than −1. The assumptions imposed by Corchón [7] imply
that the slope of players’ best-response functions lie strictly between −1 and 0, so that the backward reply correspondence is
both single-valued and decreasing. Neither is necessarily the case in many common games and neither is imposed in this paper.

3Novshek’s explicit characterization of equilibria is similar to the characterization of equilibrium in supermodular games
that uses the fixed point theorem of Tarski [39]. Both of these enable the explicit study of the behavior of “largest” and
“smallest” fixed points in response to parameter changes. Tarski’s result is used, for example, in the proof of Theorem 6 in
Milgrom and Roberts [26].
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correspondence divided with the aggregate. This transformation of the problem is useful for questions
related to uniqueness and existence and can be used for explicitly characterizing the equilibrium and deriving
comparative statics directly in certain cases. However, transforming backward reply correspondences in this
way does not simplify any arguments in this paper or strengthen any results.4

The rest of the paper is organized as follows. Section 2 defines aggregative games, equilibrium, and back-
ward reply correspondences. Section 3 provides the general comparative static results for aggregative games
with strategic substitutes. Section 4 presents our results for nice games under the local solvability condition.
Section 5 shows how the results from Sections 3 and 4 can be used to obtain general characterization results
in various applications, including games of private provision of public goods, contests, Cournot competition
and technology choice in oligopoly. Section 6 concludes and the Appendix contains some proofs omitted
from the text.

2. Aggregative Games

In this paper we study non-cooperative games Γt = ((πi, Si)i∈I , t) with finite sets of players I =
{1, . . . , I}, finite-dimensional strategy sets Si ⊆ RN , and payoff functions πi : S×{t} → R. t ∈ T ⊆ RM is a
vector of exogenous parameters, and the basic comparative statics question we wish to address is how the set
of equilibria of Γt varies with t. As usual we define S ≡

∏I
i=1 Si and S−i ≡

∏
j 6=i Sj with typical elements

s ∈ S and s−i ∈ S−i. Throughout S is assumed to be compact and each payoff function πi : S × T → R is
assumed to be upper semi-continuous on S × T and continuous on S−i × T . These assumptions ensure that
the best-reply correspondences Ri(s−i, t) ≡ arg maxsi∈Si πi(si, s−i, t) will be non-empty, compact valued,
and upper hemi-continuous.

Recall, e.g., from Gorman [15], that a function g : S → R is additively separable if there exist strictly
increasing functions H,h1, . . . , hI : R → R such that g(s) = H(

∑
i∈I hi(si)) for all s ∈ S. The unweighted

sum g(s) =
∑
i∈I si and the mean g(s) = I−1

∑
i∈I si are obvious examples. In fact all of the standard

means, including the harmonic mean, the geometric mean, and the power means are additive separable
functions (Jensen [18], section 2.3.2). Two other important examples are g(s) = (α1s

β
1 + . . . + αIs

β
I )1/β ,

S ⊆ RN+ , and g(s) =
∏
i∈I s

αi
i , S ⊆ RN++, where β, α1, . . . , αI > 0, which are, respectively, a CES function

and a Cobb-Douglas function.5

Definition 1. (Aggregative Games) The game Γt = ((πi, Si)i∈I , t) is aggregative if there exists a contin-
uous and additively separable function g : S → X ⊆ R (the aggregator) and functions Πi : Si×X ×{t} → R
(the reduced payoff functions) such that for each player i ∈ I:

πi (si, s−i, t) = Πi (si, g (s) , t) for all s ∈ S (1)

Clearly, an aggregative game is fully summarized by the tuple ((Πi, Si)i∈I , g, t). The definition of an
equilibrium is standard:

Definition 2. (Equilibrium) Let ((Πi, Si)i∈I , g, t) be an aggregative game. Then s∗(t) = (s∗1(t), . . . , s∗I(t))
is a (pure-strategy Nash) equilibrium if for each player i ∈ I,

s∗i (t) ∈ arg max
si∈Si

Πi(si, g(si, s
∗
−i), t).

When s∗(t) is an equilibrium, Q(t) ≡ g(s∗(t)) is called an equilibrium aggregate given t. And if smallest
and largest equilibrium aggregates exist, these are denoted by Q∗(t) and Q∗(t), respectively.

4It is straightforward to recast Novshek’s original existence argument in terms of share correspondences (by simply dividing
through everywhere with the aggregate Q). Similarly one would be able to recast our proofs for games with strategic substitutes
in terms of share correspondences, but this does not lead to any simplification. As for our results on “nice” games, these are
based on the idea that under the local solvability condition, the aggregate backward reply correspondence will be a continuous
single-valued function. This obviously holds for the aggregate backward reply correspondence if and only if it holds for the
associated share correspondence (since the latter’s values equals the former’s divided with Q). But this construction does not
simplify or enrich our analysis; it simply restates our results in a somewhat different language.

5In the first case hi(si) = αis
β
i (with si ≥ 0) and H(z) = z1/β . In the second hi(si) = αi log(si) and H(z) = exp(z) (with

si > 0).
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Aggregative games with additively separable aggregators are studied in detail in Cornes and Hartley
[11] and section 2.3.2 in Jensen [18]. This class is more general than that studied by Selten [37] and
Corchón [7] who consider only the case where g(s) =

∑
i si. More general classes of aggregative games have

also been proposed in the literature (e.g. Jensen [18], Martimort and Stole [25]) and questions related to
existence, best-response potentials, and stability can be addressed more generally than under Definition 1.6

Aggregative games are also closely related to semi-anonymous games which are games where each player’s
payoff depends on his own strategy and the distribution of opponents’ strategies (see, e.g., Kalai [19]).7

Since opponents’ strategies enter player i’s payoff function only through the aggregator g(s) = H(
∑
i hi(si)),

player i’s best-reply correspondence can always be expressed as,

Ri(s−i, t) = R̃i(
∑
j 6=i

hj(sj), t). (2)

In words, a player’s best replies will always be a function of the aggregate of the other players
∑
j 6=i hj(sj),

and the exogenous parameter t. We refer to R̃i as the reduced best-reply correspondence. Now fix an
aggregate, i.e., a value in the domain of the aggregator, Q ∈ X ≡ {g(s) : s ∈ S}; and note that Q = g(s)
⇔
∑
j 6=i hj(sj) = H−1(Q)− hi(si). Substituting into the right-hand side of (2) we can find the set of best

replies, for each player i ∈ I, that are consistent with Q:

Bi(Q, t) ≡ {si ∈ Si : si ∈ R̃i(H−1(Q)− hi(si), t)}. (3)

Bi : X × T → 2Si ∪ ∅ is the backward reply correspondence of player i. It is obvious that any value of
the aggregator Q(t) for which Q(t) = g(s∗(t)) and s∗i (t) ∈ Bi(Q(t), t) for all i, will induce an equilibrium
in accordance with Definition 2. Consequently Q(t) is an equilibrium aggregate given t if and only if
Q(t) ∈ Z(Q(t), t) where Z : X × T → 2X ∪ ∅ is the aggregate backward reply correspondence defined by:

Z(Q, t) ≡ {g(s) ∈ X : si ∈ Bi(Q, t) for all i ∈ I} (4)

As mentioned, the basic question we address in this paper is how the set of equilibria of Γt vary with t,
and more specifically our main focus is on how the equilibrium aggregates vary with t. Throughout, under
the assumed conditions, equilibria, and therefore equilibrium aggregates, will not be unique, and therefore
our comparative static statements will be similar in spirit to the results of Milgrom and Roberts [27] and
tell us that “the smallest and largest equilibrium aggregates are increasing in t”. Intuitively, this means that
the set of all equilibrium aggregates is contained in an interval [Q∗(t), Q

∗(t)] whose lower and upper bounds
are increasing in t.8 If additional conditions are imposed (or hold in a specific application) which ensure
that Q∗(t) = Q∗(t), then our results of course describe the behavior of this unique equilibrium aggregate.

3. Aggregative Games with Strategic Substitutes

In this section we show that if an aggregative game has strategic substitutes then regular comparative
statics can be obtained under the very weak compactness and continuity conditions introduced at the
beginning of Section 2. So just as in games with strategic complementarities (Vives [46], Milgrom and
Roberts [26], Topkis [42]), no differentiability, quasi-concavity, or convexity conditions are needed to obtain

6As shown by Cornes and Hartley [11], Definition 1 represents the most general class of aggregative games that admits back-
ward reply correspondences when there are three or more players and the aggregator is strictly increasing. In the working paper
version of this paper (Acemoglu and Jensen [2]) we address the situation where the function H in the definition of an aggregator
is merely assumed to be increasing (rather than strictly increasing) which still allows for backward reply correspondences.

7Clearly, an aggregative game is semi-anonymous if the aggregator g is symmetric. If g is not symmetric, an aggregative
game will not be semi-anonymous except in pathological cases (such as when payoff functions are constant in g(s)). Semi-
anonymous games play a central role in the study of large games, and not surprisingly, aggregative games similarly yield very
nice results when there is a continuum of players (Acemoglu and Jensen [1]).

8Put differently, the set of fixed points of Z will be ascending in t (see e.g. Topkis [42]). See also Milgrom and Roberts [27]
for a general methodological discussion.
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comparative statics results. Note that the aggregative structure is critical for this observation. In the general
class of games with strategic substitutes much more restrictive assumptions are needed in order to obtain
meaningful comparative statics results (see Roy and Sabarwal [32]). Concrete applications of the results can
be found in Section 5, in particular that section contains an application to a game where strategy sets are
multidimensional which illustrates the results’ full scope.

The definition of a game with strategic substitutes is standard.

Definition 3. (Strategic Substitutes) The game Γt = ((πi, Si)i∈I , t) is a game with strategic substitutes
if strategy sets are lattices and each player’s payoff function
πi(si, s−i, t) is supermodular in si and exhibits decreasing differences in si and s−i.

Equivalently, we will also say that a game has (or features) strategic substitutes. Si is a lattice if s, s′ ∈ Si
implies s∧ s′, s∨ s′ ∈ Si where s∧ s′ and s∨ s′ denote, respectively, the infimum and supremum of s and s′.
πi : Si×S−i×T → R is supermodular in si if for all fixed (s−i, t) ∈ S−i×T : πi(si∨s′i, s−i, t)−πi(si, s−i, t) ≥
πi(s

′
i, s−i, t) − πi(si ∧ s′i, s−i, t) for all si, s

′
i ∈ Si. Finally, πi : Si × S−i × T → R exhibits decreasing

differences in si and s−i if for all t ∈ T and s′i > si: πi(s
′
i, s−i, t) − πi(si, s−i, t) is non-increasing in s−i

(see e.g., Topkis [40] or Topkis [42]). As we explain in a moment, all three are normally straight-forward
to verify in aggregative games. It follows directly from Topkis’ theorem (Topkis [40]) that in a game of
strategic substitutes, each player’s best-response correspondence will be decreasing in the strong set order
in opponents’ strategies. That best-response correspondences are decreasing is the essential property used
in our proofs and our results remain valid under any set of conditions that ensure this outcome.9 For a
detailed exposition of the general class of games with strategic substitutes, see e.g. Roy and Sabarwal [33].

A game that is both aggregative and has strategic substitutes is an aggregative game with strategic
substitutes. Definition 3 is usually straightforward to verify in aggregative games. Particularly simple
is the case with a linear aggregator g(s) =

∑I
j=1 sj where πi(si, s−i, t) = Πi(si,

∑I
j=1 sj , t). If πi is twice

differentiable, then decreasing differences is equivalent to non-positive cross-partials, i.e., to havingD2
sisjπi ≤

0 for all j 6= i. But since D2
sisjπi = D2

12Πi + D2
22Πi for all j 6= i, we see that the aggregative structure

implies that decreasing differences holds for player i under the single condition that:10

D2
12Πi +D2

22Πi ≤ 0 (5)

Since a game with one-dimensional strategy sets automatically satisfies the lattice and supermodularity
conditions of Definition 3, a game with one-dimensional strategy sets and a linear aggregator will conse-
quently be an aggregative game with strategic substitutes if and only if (5) holds for all i ∈ I. The strict
inequality version of (5) is part of what Corchón [7] calls “strong concavity” (Corchón [7], Assumption 2).

Theorem 1. (Existence) Let ((Πi, Si)i∈I , g, t) be an aggregative game with strategic substitutes. Then
there exists an equilibrium s∗(t) ∈ S, and also smallest and largest equilibrium aggregates Q∗(t) and Q∗(t).
Moreover, Q∗ : T → R is a lower semi-continuous function and Q∗ : T → R is an upper semi-continuous
function.

9 As a consequence, instead of Definition 3 (supermodularity and decreasing differences), we could equivalently work with
quasi-supermodularity and the dual single-crossing property of Milgrom and Shannon [28]. Note also that since players do
not take Q as given, there is no exact relationship between strategic substitutes and the condition that Πi(si, Q) exhibits

decreasing differences in si and Q. For example, suppose that N = 1, g(s) =
∑I
j=1 sj , and assume that payoff functions are

twice differentiable. Then the requirement for strategic substitutes is D2
sisq

Πi(si,
∑I
j=1 sj) = D2

12Πi(si, Q)+D2
22Πi(si, Q) ≤ 0

where Q =
∑I
j=1 sj . Decreasing differences in si and Q, on the other hand, requires that D2

12Πi(si, Q) ≤ 0. Clearly neither
condition implies the other.

10The derivatives in these statements are defined by D2
12πi(si,

∑
j 6=i sj , t) =

∂2Πi(x,y,t)
∂x∂y |(x,y)=(si,

∑
j 6=i sj)

and

D2
22πi(si,

∑
j 6=i sj , t) =

∂2Πi(x,y,t)

∂2y |(x,y)=(si,
∑

j 6=i sj)
.
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Proof. Definition 1 is a special case of the class of quasi-aggregative games of Jensen [18] (see Jensen [18],

section 2.3.2. for an explicit verification of this claim). As a consequence, aggregative games as defined

in this paper are either best-reply potential games or best-reply pseudo-potential games when best-reply

correspondences have decreasing selections, and thus they have a pure strategy Nash equilibrium (Jensen

[18], Corollary 1).

To prove the claims concerning the smallest and largest equilibrium aggregates, first define Gr[Ri] : T →
2S such that Gr[Ri](t) ≡ {s ∈ S : si ∈ Ri(s−i, t)} for each player i. This correspondence is upper hemi-

continuous and has a closed graph since if smi ∈ Ri(s
m
−i, t

m) for a convergent sequence (sm, tm) → (s, t),

then by the fact that Ri itself has a closed graph, si ∈ Ri(s−i, t). Let E(t) = ∩iGr[Ri](t) denote the set

of equilibria given t ∈ T . Since E : T → 2S is defined as the intersection of a finite number of upper

hemi-continuous correspondences, it is itself upper hemi-continuous. Since E(t) ⊆ S, where S is compact,

E therefore also has compact values. The existence of the smallest and largest equilibrium aggregates,

Q∗(t) = mins∈E(t) g(s) and Q∗(t) = maxs∈E(t) g(s), therefore follows from Weierstrass’ theorem since g

is continuous. Upper semi-continuity of Q∗ : T → R follows directly from the fact that g is upper semi-

continuous and E is upper hemi-continuous (see Ausubel and Deneckere [5], Theorem 1). Lower semi-

continuity of Q∗ follows by the same argument since Q∗(t) ≡ −maxs∈E(t)−g(s) and g is also lower semi-

continuous.

Naturally, pure-strategy equilibria are not necessarily unique under the conditions of Theorem 1, so in
general Q∗(t) is different from Q∗(t). For conditions that guarantee uniqueness in games with strategic
substitutes see e.g. Theorem 2.8. in Vives [47] or Corchón [7]. See also the discussion of uniqueness in
Section 4.1.1.

Our first substantive result addresses the situation where an exogenous parameter t ∈ T ⊆ R directly
“hits” the aggregator in the following sense:

Definition 4. (Shocks that Hit the Aggregator) Consider the payoff function πi = πi(si, s−i, t). Then
an increase in t ∈ T ⊆ R is said to be a shock that hits the aggregator if (1) can be strengthened to:

πi(s, t) = Πi(si, G(g (s) , t)) for all s ∈ S, (6)

where G = G(g(s), t) is continuous, increasing in t and additively separable in s and t.

Note that the terminology adopted here requires some care and elaboration. First, there is a direction
of change in the definition: a shock that hits the aggregator actually “hits it positively” as implied by the
condition that G is increasing in t, but we drop the “positively” qualifier to simplify the terminology. Of
course, if G were decreasing in t, −t would be a shock that hits the aggregator. Second, a shock that hits
the aggregator does not change the aggregator g or the aggregate g(s), it merely changes the aggregator

directly in the payoff function. For example, if πi(s, t) = Πi(si, t+
∑I
j=1 sj), then an increase in t is a shock

that hits the aggregator as seen by taking G(g (s) , t) = t+ g(s) and g (s) =
∑I
j=1 sj . And clearly, changing

t does not change g or g(s). Examples of shocks that hit the aggregator include an increase in the state’s
provision of the public good in the public good provision model (Section 5.1), an increase in the discount
factor in a contest/patent race (Section 5.2), or a downwards shift in the demand curve in the Cournot
model (Section 5.3).

Notice that when a shock hits the aggregator, the marginal payoff of each player decreases (provided
that marginal payoffs are defined).11 Hence we would intuitively expect a shock that hits the aggregator
to lead to a decrease in the aggregate. The next theorem shows that in an aggregative game with strategic
substitutes, this is indeed the case.

11By strategic substitutes, agent i’s marginal payoff must be decreasing in opponents’ strategies and hence, since G is
increasing in s and t, an increase in t must lead to a decrease in marginal payoff.
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Theorem 2. (The Comparative Statics of Shocks that Hit the Aggregator) In an aggregative game
with strategic substitutes, a shock that hits the aggregator leads to a decrease in the smallest and largest
equilibrium aggregates, i.e., the functions Q∗(t) and Q∗(t) will be decreasing in t ∈ T .

Proof. Let t ∈ T be a shock that hits the aggregator. In particular then πi(s, t) ≡ Πi(si, G(g (s) , t)) for all i,

where G(g(s), t) = H̃(hT (t) +
∑I
j=1 hj(sj)) and g(s) =

H(
∑
i∈I hi(si)) is the aggregator. The reduced best-reply correspondence (2) can therefore be written as:

Ri(s−i, t) ≡ R̃i(hT (t)+
∑
j 6=i hj(sj)). In what follows we abuse notation slightly and define Q =

∑
i∈I hi(si)

and speak of this as the aggregate. Since the true aggregate H(
∑
i∈I hi(si)) increases if and only if∑

i∈I hi(si) increases, the conclusion that Q decreases with t obviously implies that conclusion of the theo-

rem. Given Q define the following correspondence for each i ∈ I:

B̃i(Q, t) ≡ {η ∈ hi(Si) : η ∈ hi ◦ R̃i(hT (t) +Q− η)} (7)

If strategy sets are one-dimensional and the aggregator is linear, this is just the usual backward reply

correspondence Bi as defined in Section 2 (in particular,
∑
i∈I hi(si) is the true aggregate in this case). The

corresponding aggregate backward reply correspondence is then:

Z(Q, t) ≡
I∑
i=1

B̃i(Q, t) (8)

As explained in Section 2, Q will be an equilibrium aggregate given t if and only if Q is a fixed point for

this correspondence (Q ∈ Z(Q, t)).

Let q(Q, t) ∈ Z(Q, t) be the “Novshek-selection” shown as the thick segments in the figure below. Further

details about this selection can be found in the appendix (Section 7.1). As is clear from the figure, the

Novshek selection has two key features in games with strategic substitutes: Firstly, it will be decreasing in

Q, i.e., if Q′ ≥ Q then q(Q′, t) ≤ q(Q, t). Secondly, its left end-point Qmin will be an equilibrium aggregate,

i.e., q(Qmin, t) = Qmin. The latter of these claims is proved in Novshek [30] (see also Kukushkin [22]) in

the case of a linear aggregator. Since their proofs carry over directly to our slightly more general setting,

we omit the details. It is clear that without strategic substitutes, one would generally not be able to find

a selection with these properties — in particular Qmin might not be an equilibrium aggregate. Note also

that as is clear in the figure, Qmin must necessarily be the largest equilibrium aggregate. The reason is that

if Q∗ ∈ Z(Q∗, t) and Q∗ > Qmin, Condition 1. in the definition of the Novshek selection (see Definition 10

in Secton 7.1 for further details) would be violated.

Figure 1: Constructing the aggregate “Novshek selection”

We are now ready to prove the main claim of the theorem, namely that the largest equilibrium aggregate

Qmin characterized above, will be decreasing in t (for the case of the smallest equilibrium aggregate, see the

end of the proof). To make the proof more accessible, we first illustrate it graphically, followed by formal
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arguments in all cases. It is sufficient to establish this result for all local changes in t since if a function is

decreasing at all points, it is globally decreasing (of course, the associated equilibrium aggregate may well

jump — the argument is local only in regard to changes in t).

First, note that since hT is an increasing and continuous function, any selection q̂(Q, t) from Z will be

locally decreasing in Q if and only if it is locally decreasing in t (this is an immediate consequence of the

separability assumptions — see the definition of B̃i above). Likewise, such a selection q̂(Q, t) will be locally

continuous in Q if and only if it is locally continuous in t. Figures 2-5 illustrate the situation for t′ < t′′.

The fact that the direction of the effect of a change in Q and t is the same accounts for the arrows drawn.

In particular, any increasing segment on the graph of Z will be shifted up when t is increased, and any

decreasing segment will be shifted down.

There are four cases: Either the graph of Z’s restriction to a neighborhood of Qmin is locally continuous

and locally decreasing in Q and t (Case I) or locally continuous and locally increasing in Q and t (Case

II). Otherwise, continuity does not obtain which is the same as saying that the equilibrium aggregate must

“jump” when t is either increased from t′ to t′′ (Cases III and IV) or decreased from t′′ to t′ [If t is decreased,

case III reduces to Case I and Case IV reduces to Case II.]

Figure 2: Case I Figure 3: Case II

Figure 4: Case III Figure 5: Case IV

Cases III and IV are easily dealt with: If the equilibrium aggregate jumps, it necessarily jumps down

(and so is decreasing in t). The reason is that an increase in t will always correspond to the graph of Z being

shifted to “the left” (i.e., any increasing segment will be shifted up, and any decreasing segment shifted

down which was the formulation used above). Hence no new equilibrium above the original largest one can

appear, the jump has to be to a lower equilibrium as is also immediate in light of the figures. We now

consider the more difficult Cases I and II in turn. Throughout the function q̂ denotes the restriction of Z

to a neighborhood of Qmin, and Q′ and Q′′ refer to the equilibrium aggregate Qmin associated with t′ and

t′′, respectively.
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Case I: In this case there exist Q < Q such that q̂(Q, t)−Q > 0 and q̂(Q, t)−Q < 0, and such that the new

equilibrium aggregate Q′′ lies in the interval [Q,Q]. Since q̂ is decreasing in t, it immediately follows that

Q′′ ≤ Q′ as desired. Note that this observation does not depend on continuity of q̂ in Q, but merely on the

fact that a new equilibrium aggregate Q′′ exists and lies in a neighborhood of Q′ in which q̂ is decreasing (in

other words, given that q̂ is decreasing, it depends solely on the fact that the aggregate does not “jump”).

Figure 6: Slope below 1 is impossible: Q′ being largest equilib-
rium aggregate violates that q(Q, t) is decreasing in Q.

Figure 7: The “Novshek selection” leading to the
smallest equilibrium aggregate.

Case II: When q̂ is (locally) increasing, there must exist Q < Q′ < Q such that Q − q̂(Q, t) > 0 and

Q− q̂(Q, t) < 0. Intuitively, this means that the slope of q̂ is greater than 1 at the point Q′ as illustrated in

Figure 3. Formally, this can be proved as follows: Assume that there exists Q◦ > Q′ such that Q◦−q̂(Q◦, t) ≤
0 (intuitively this means that the slope is below unity, see Figure 6). Then since q̂(Q◦, t) ≥ Q◦ > Q′, no

Novshek selection could have reached Q′ and there would consequently have to be a larger equilibrium Q∗,

which is a contradiction.

We now prove that the equilibrium aggregate is decreasing in t: Q′′ ≤ Q′. As in the previous case,

we prove this without explicit use of continuity (the proof is straightforward if continuity is used directly

as seen in Figure 3). In particular, let us establish the stronger statement that C(t) ≡ hT (t) + Q(t)

is decreasing in t where Q(t) is the largest equilibrium aggregate given t (since hT (t) is increasing in

t, it is obvious that Q(t) must be decreasing in t if C(t) is decreasing). Define the following function:

f(C, t) = C − hT (t) − q̂(C − hT (t), t). Clearly C(t) = hT (t) + Q(t) as defined with Q(t) an equilibrium

if and only if f(C(t), t) = 0. Let C = hT (t) + Q and C = hT (t) + Q. From the previous paragraph,

f(C, t) = Q − q̂(Q, t) > 0 and f(C, t) = Q − q̂(Q, t) < 0. Since Bi(C − hT (t), t) is independent of t (t

cancels out in the definition of the backward reply correspondence), q̂(C − hT (t), t) must be constant in t,

i.e., q̂(C − hT (t), t) = q̃(C) for some function q̃ which is increasing (since we are in Case II). So f can be

written as f(C, t) = C − hT (t)− q̃(C) where q̃ is increasing, and consequently f will be decreasing in t and

Q. Considering the solution to f(C, t) = 0 given t, i.e., C(t), it immediately follows that if t increases then

C(t) must decrease. This finishes the proof of the claim in Case II.

Combining the previous observations, we conclude that the largest equilibrium aggregate is decreasing

in t as claimed in the theorem. None of the previous conclusions depend on continuity of q in Q, and it is

straightforward to verify that the same conclusions hold regardless of whether Q lies in a convex interval or

not (strategy sets could be discrete, see Kukushkin [22] for the details of how the backward reply selection is

constructed in such non-convex cases). The statement for the smallest equilibrium aggregate can be shown

by an analogous argument. In particular, instead of considering the selection q(Q, t) one begins with Q

sufficiently low and studies the backward reply correspondence above the 45◦ line, now choosing for every

Q the smallest best response (Figure 7). This completes the proof of Theorem 2.

Notice how the proof of Theorem 2 exploits the constructive nature of Novshek [30]’s existence proof
(suitably generalized to fit the present framework). This explicit description of the largest (and smallest)
equilibrium aggregates is ultimately what allows us to determine the direction of any change resulting from
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a shock that increases the aggregator.
Theorem 2 is also robust and global in the sense discussed by Milgrom and Roberts [27] and Milgrom

and Shannon [28]. In particular, it imposes only minimal qualitative restrictions, and allows us to deal with
situations where the equilibrium aggregates “jump” when t is changed.

In many games — a classical example being that of Cournot oligopoly (e.g. Seade [36]) — it is interesting
to study what happens to equilibria as additional players enter the game (see Alos-Ferrer and Ania [3] for a
general discussion of these issues in an aggregative games framework). To formalize this, consider initially
a game with I players as studied above, and now imagine that an additional player (the entrant) is added.
The entrant player I + 1 is (by definition) assigned the “inaction” strategy inf SI+1 before entry (e.g.,
when SI+1 = [0, s̄], inaction corresponds to “zero”, inf SI+1 = 0; zero production in oligopoly, say, or zero
contribution to the provision of a public good). If we take as aggregator g(s) = g(s1, . . . , sI , sI+1), this leads
to a well-defined aggregative game both before and after entry: before entry there are I strategic players
and sI+1 is just a constant, after entry this is an I + 1 player aggregative game in the usual sense.12

Theorem 3. (The Comparative Statics of Entry) In an aggregative game with strategic substitutes,
entry of an additional player leads to a decrease in the smallest and largest aggregates of the existing players
in equilibrium.

Proof. This result follows from Theorem 2 by observing that the entry of an additional player corresponds

to a shock that hits the aggregator. To see this, let gI+1(s1, . . . , sI , sI+1) be the aggregator in the game after

entry. Since gI+1 is additively separable, we necessarily have gI+1(s1, . . . , sI , sI+1) = G(gI(s1, . . . , sI), sI+1)

(Vind and Grodal [45]) where G and gI satisfy the above requirements for an increase in sI+1 to be a

shock that hits the aggregator. Since gI(s1, . . . , sI) is the aggregate of the existing players, the theorem’s

conclusion follows from Theorem 2.

Intuitively, Theorem 3 shows that in an aggregative games with strategic substitutes, entry “crowds out”
existing players. While intuition may suggest that entry should make the overall aggregate inclusive of the
entrant increase, it is well known from the Cournot model that this is not a general feature of games with
strategic substitutes (see Seade [36], Corchón [7]). We return to this topic in the next section.

The next theorem presents our most powerful result for games with strategic substitutes. This result
can be viewed as aggregative games with strategic substitutes’ counterpart to the well-known monotonicity
results for games with strategic complementarities (Vives [46], Milgrom and Roberts [26]). One difference,
however, is that with strategic substitutes, the results apply only to shocks that are idiosyncratic, i.e., to
changes in a parameter ti that affects a single player, i ∈ I. Note that when Ti ⊆ RM with M > 1, an
increase in ti means that one or more of the coordinates of ti are increased.

Definition 5. (Positive Idiosyncratic Shocks) An increase in ti ∈ Ti is a positive idiosyncratic shock
to player i if πi = πi(si, s−i, ti) exhibits increasing differences in si and ti and if πj(s, ti) = πj(s) for all
j 6= i.

The previous definition parallels standard definitions in games with strategic complementarities (e.g.,
Vives [47]). When πi is twice differentiable, it will exhibit increasing differences in si and ti if and only if
the matrix of cross-partials is nonnegative, i.e., D2

sitiπi ∈ RN×M+ for all s and ti. It should be mentioned
that the single-crossing property of Milgrom and Shannon [28] can replace increasing differences in the
previous definition without changing the following result. In the following statement, the smallest and
largest equilibrium strategies for player i are defined analogously to the smallest and largest equilibrium
aggregates.

12When the aggregator is a so-called generalized symmetric aggregator (Alos-Ferrer and Ania [3], see also Jensen [18], section
2.3.1) it is possible to define a game with an arbitrary number of players very elegantly. Unfortunately, that definition does not
generalize to aggregators that are merely assumed to be additively separable which is why we have chosen to formulate entry
as a situation with I + 1 players one of whom is initially a “dummy” player. Needless to say, our setting extends to the entry
of any number of players by repeated application of Theorem 3.
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Theorem 4. (The Comparative Statics of Idiosyncratic Shocks) In an aggregative game with strate-
gic substitutes, a positive idiosyncratic shock to player i ∈ I leads to an increase in the smallest and largest
equilibrium strategies for player i, and to a decrease in the associated aggregates of the remaining players
(which are, respectively, the largest and smallest such aggregates).

Proof. Let R̃i denote the reduced backward reply correspondence defined in Section 2. Assume without loss

of generality that the idiosyncratic shock affects the first player, in particular then R̃i is independent of the

shock t1 for all i 6= 1. Any equilibrium will satisfy: s1 ∈ R̃1(
∑
j 6=1 hj(sj), t1) and hi(si) ∈ hi◦R̃i(

∑
j 6=i h(sj))

for i = 2, . . . , I. Consider the last I − 1 inclusions, and rewrite these as:

hi(si) ∈ hi ◦ R̃i((
∑
j 6=i,1

hj(sj)) + h1(s1)) for i = 2, . . . , I. (9)

For any s1 ∈ S1, Theorem 1 implies that there exist smallest and largest aggregates of players 2 to I, y∗(s1)

and y∗(s1) such that y∗(s1) =
∑
j 6=1 hj(sj,∗) and y∗(s1) =

∑
j 6=1 hj(s

∗
j ), where the strategies are solutions

to the I − 1 inclusions in (9). And by Theorem 2, y∗, y
∗ : S1 → R will be decreasing functions. Now replace

s1 with s̄1 = −s1, and consider:

s̄1 ∈ −R̃1(y, t1)

and

y ∈ {y∗(−s̄1), y∗(−s̄1)}.

This system is ascending in (s̄1, y) and descending in t1 in the sense of Topkis [42], hence its smallest and

largest fixed points are decreasing in t1. Therefore, the smallest and largest equilibrium strategies for player

1 are increasing in t1, while the associated aggregates of the remaining players are decreasing in t1. That

the smallest and largest strategies for player 1 do in fact correspond to the smallest and largest strategies

in the original game is easily verified: Clearly, y∗(s1) and y∗(s1) are the smallest and largest aggregates of

the remaining players across all strategy profiles compatible with an equilibrium given s1. And since R̃1

is descending in y, the corresponding equilibrium strategies of player 1 must therefore necessarily be the

largest and the smallest such strategies as well.

Section 5 contains multiple applications of this result. It immediately follows, for example, that —
assuming only strategic substitutes — a decrease in the marginal cost of a firm in Cournot oligopoly will
make that firm increase its output at the expense of the other firms. Since the Cournot model has strategic
substitutes if it is merely assumed that inverse demand is concave and decreasing (Vives [47]), this conclusion
is valid for arbitrary cost functions. This shows that Theorem 4 is a substantial generalization of existing
results such as those of Corchón [7].

We end this section with a simple corollary to Theorem 4 characterizing the effects of a positive shock
on payoffs:

Corollary 1. (Payoff Effects) Assume in addition to the conditions of Theorem 4 that all payoff func-
tions are decreasing [respectively, increasing] in opponents’ strategies and that player i’s payoff function is
increasing [respectively, decreasing] in the idiosyncratic shock ti. Then an increase in ti increases [respec-
tively, decreases] player i’s payoff in equilibrium and decreases [respectively, increases] the payoff of at least
one other player.

Proof. Consider t′i < t′′i in Ti and let s′ be the equilibrium given t′i corresponding to player i’s smallest

strategy and s′′ the equilibrium given t′′i corresponding to player i’s smallest strategy (the proof to follow

is the same for the largest equilibrium strategies of player i). Under the assumptions of the Corollary,

πi(s
′
i, g(s′), t′i) ≤ πi(s

′
i, g(s′i, s

′′
−i, t

′′
i )) ≤ πi(s

′′
i , g(s′′), t′′i ). Since the strategy of at least one player j 6= i
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must decrease, the aggregate of opponents’ strategies faced by that player
∑
k 6=j hk(s′k) must increase (the

best-response correspondences are decreasing in the strong set order). Consequently, πj(s
′′
j , g(s′′)) ≤ πj(s′′j ,

g(s′′j , s
′
−j)) ≤ πj(s′j , g(s′)).

4. Nice Aggregative Games

In the previous section we saw how a number of robust and global comparative statics results can be
established for aggregative games with strategic substitutes. From Vives [46], Milgrom and Roberts [26],
and many others, we know that robust and global results can similarly be established in games with strategic
complementarities (and these results obviously still apply if the game is aggregative). But of course, not all
aggregative games feature strategic substitutes or complementarities, examples in this “neither-or” category
being contests (Section 5.2) as well as public good provision models when the private good is inferior for
some levels of income (Section 5.1). In this section, we present a third alternative, named the local solvability
condition under which robust comparative statics statements can be derived in aggregative games. Unlike
results on strategic substitutes or complements, the local solvability condition only works in what we call
nice games which are in essence games that satisfy a standard battery of differentiability, convexity, and
boundary conditions.13 In nice games, the local solvability condition places sufficient structure on the
aggregate backward reply correspondence of Section 2 for the equilibrium comparison results of Milgrom
and Roberts [27] and Villas-Boas [44] to apply. So just as in the previous section, we obtain global and
robust results which could not have been obtained by purely local methods such as a standard application
of the implicit function theorem.

We begin by defining nice games. Recall that a differentiable function πi is pseudo-concave (Mangasarian
[24]) in si if for all si, s

′
i ∈ Si:

(s′i − si)TDsiπi(si, s−i, t) ≤ 0 ⇒ πi(s
′
i, s−i, t) ≤ πi(si, s−i, t).

Naturally, any concave function is pseudo-concave.

Definition 6. (Nice Aggregative Games) An aggregative game ((Πi, Si)i∈I , g, t) is said to be a nice
aggregative game if:

1. The aggregator g is twice continuously differentiable.

2. Each strategy set Si is compact and convex, and every payoff function πi(s, t) = Πi(si, g(s), t) is twice
continuously differentiable, and pseudo-concave in the player’s own strategies.

3. For each player, the first-order conditions hold whenever a boundary strategy is a (local) best response,
i.e., DsiΠi(si, g(s), t) = 0 whenever si ∈ ∂Si and (v − si)TDsiΠi(si, g(s), t) ≤ 0 for all v ∈ Si.

Note that part 3. of this definition does not rule out best responses on the boundary of a player’s
strategy set. Instead, it simply requires first-order conditions to be satisfied whenever a best response is
at the boundary. Consequently, it is weaker than the standard “Inada-type” conditions ensuring that best
responses always lie in the interior of strategy sets. We show below that the boundary condition 3. can be
dispensed with if the local solvability condition is strengthened (Definition 8).

The next theorem establishes existence of an equilibrium and of smallest and largest equilibrium aggre-
gates in any nice aggregative game.

Theorem 5. (Existence) Let ((Πi, Si)i∈I , g, t) be a nice aggregative game. Then there exists an equilib-
rium s∗(t) ∈ S, and also smallest and largest equilibrium aggregates Q∗(t) and Q∗(t). Moreover, Q∗ : T → R
is a lower semi-continuous function and Q∗ : T → R is an upper semi-continuous function.

13As we show below, boundary conditions are not needed when strategy sets are one-dimensional.
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Proof. Existence follows straight from Kakutani’s fixed point theorem since best-reply correspondences

will be upper hemi-continuous and have convex values (any pseudo-concave function is quasi-concave). The

claims concerning the smallest and largest equilibrium aggregates follow from the same argument as in the

proof of Theorem 1.

Just as in the setting with strategic substitutes, uniqueness of equilibrium is not implied by any of this
section’s conditions (including the local solvability condition). If, however, uniqueness can be established so
that Q∗(t) = Q∗(t) for all t, the statements to follow will just refer to the unique equilibrium aggregate.

We are now ready to introduce the local solvability condition, which is the key assumption of this section.
Using that g is differentiable and additively separable so that g(s) = H(

∑
j hj(sj)), the marginal payoff for

player i can be expressed as,

Dsiπi(s, t) = D1Πi(si, g(s), t) +D2Πi(si, g(s), t)H ′(H−1(g(s))Dhi(si), (10)

where DmΠi(si, g(s), t) ≡ DxmΠi(x1, x2, t)|(x1,x2)=(si,g(s)), m = 1, 2.
Equation (10) shows that in an aggregative game, the marginal payoff is always a function of the player’s

own strategy si, the aggregate g(s), and the exogenous parameters t. Define a function Ψi : Si×X×T → RN
that makes this relationship explicit:14

Ψi(si, Q, t) ≡ D1Πi(si, Q, t) +D2Πi(si, Q, t)H
′(H−1(Q))Dhi(si). (11)

In the special case where strategy sets are one-dimensional and g(s) =
∑
i si, Ψi is precisely the function

introduced by Corchón [7] in his analysis of aggregative games.15 Naturally Ψi(si, Q) = 0⇔ [Dsiπi(s, t) = 0
and g(s) = Q], hence when the game is nice so that first-order conditions are necessary and sufficient for an
optimum:

si ∈ Bi(Q, t)⇔ Ψi(si, Q, t) = 0 , (12)

where Bi : X × T → 2Si is the backward reply correspondence of Section 2. It is this simple relationship
between Ψi and Bi that makes the class of nice games valuable. If we fix Q and t and differentiate Ψi with
respect to si, we get an N ×N matrix DsiΨi(si, Q, t) ∈ RN×N . The determinant of this matrix is denoted
by |DsiΨi(si, Q, t)| ∈ R. If strategy sets are one-dimensional, |DsiΨi(si, Q, t)| = DsiΨi(si, Q, t) ∈ R. We
are now ready to define the local solvability condition.

Definition 7. (Local Solvability) Player i ∈ I is said to satisfy the local solvability condition if Ψi(si, Q, t) =
0 ⇒ |DsiΨi(si, Q, t)| 6= 0 for all si ∈ Si, Q ∈ X, and t ∈ T .

As mentioned above, the following stronger version of local solvability will allow us to dispense with any
boundary conditions if strategy sets are one-dimensional.

Definition 8. (Uniform Local Solvability) When Si ⊆ R, player i ∈ I is said to satisfy the uniform
local solvability condition if Ψi(si, Q, t) = 0 ⇒ DsiΨi(si, Q, t) < 0 for all si ∈ Si, Q ∈ X, and t ∈ T .

Before discussing the interpretation of these conditions, it is useful to consider a concrete example. Take
the Cournot model where Πi(s) = siP (

∑
j sj)−ci(si) and so Ψi(si, Q) = P (Q)+siP

′(Q)−c′i(si) (suppressing
here exogenous parameters). Hence the local solvability condition will hold if either DsiΨi(si, Q) = P ′(Q)−
c′′i (si) < 0 or DsiΨi(si, Q) = P ′(Q)−c′′i (si) > 0 whenever P (Q)+siP

′(Q)−c′i(si) = 0. If the first of the two
holds whenever P (Q)+siP

′(Q)−c′i(si) = 0, the uniform local solvability condition is satisfied. For example,

14Here the variables si and Q are independent arguments in Ψi, so that Q is kept fixed when taking the derivative of Ψi.

Hence, e.g., DsiΨi(si, Q, t) =
∂Ψi(x1,x2,t)

∂x1 |(x1,x2)=(si,Q)
when N = 1.

15Corchon denotes this function by Ti (Corchón [7], page 155). See also Section 2 in Cornes and Hartley [11] for the general
case considered here.
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this will be the case when costs are convex and inverse demand is strictly decreasing (these conditions are
clearly not necessary).16 Other examples where the uniform local solvability condition is satisfied is in the
public good provision model if the public good is strictly normal (Section 5.1), and in contests if players’
cost functions have larger curvature than their success functions (Section 5.2).

The local solvability condition requires that the determinant of DsiΨi is nonzero on the subspace where
Ψi = 0. This implies that we can solve the equation Ψi(si, Q) = 0 locally for si given Q, hence its name.
To be precise, when Ψi(si, Q, t) = 0, the local solvability condition allows us to apply the implicit function
theorem to conclude that there exist open neighborhoods Nsi ⊆ Si and MQ ⊆ X of si and Q, respectively,

and a continuous map bi : MQ → Nsi such that for each Q̂ ∈ MQ, bi(Q̂) is the unique solution to

Ψi(si, Q̂, t) = 0 in Nsi . In terms of backward replies, we see from (12) that this implies local uniqueness
as well as continuity of backward replies (in fact the function bi :MQ → Nsi will be such a local selection
from the backward reply correspondence). In each of the proofs below, this is the critical component and
our results would go through under any set of conditions that ensures this outcome.

If strategy sets are one-dimensional (Si ⊆ R for all i), and more generally if strategy sets are lattices and
payoff functions supermodular in own strategies, we can define positive shocks in the standard way known
from games with strategic complementarities (see e.g. Vives [47]). Recall again that if t ∈ T ⊆ RM , M > 1,
then an increase in t means that at least one of t’s coordinates increases.17

Definition 9. (Positive Shocks) Consider the payoff functions πi = πi(si, s−i, t). Then an increase in t
is called a positive shock to t ∈ T if each Si is a lattice, and πi is supermodular in si and exhibits increasing
differences in si and t. In particular, if Si ⊆ R for all i, then t is a positive shock if each πi exhibits
increasing differences in si and t.

Notice that if an increase in t is an idiosyncratic shock (πi = πi(s, t) and πj = πj(s) for all j 6= i),
Definition 9 trivially holds for all j 6= i which brings us back to Definition 5 of the previous section. The
discussion immediately prior to Theorem 2 also implies that a shock that hits the aggregator is a negative
shock to t (−t is a positive shock) if the game features strategic substitutes, and by the same reasoning, t
will be a positive shock if the game features strategic complementarities. These observations clarify how the
following theorem complements our findings from the previous section.

Theorem 6. (Aggregate Comparative Statics) Consider a nice aggregative game where each player’s
payoff function satisfies the local solvability condition. Then a positive shock to t ∈ T leads to an increase
in the smallest and largest equilibrium aggregates, i.e., the functions Q∗(t) and Q∗(t) will be increasing
in t. When strategy sets are one-dimensional and each player’s payoff function satisfies the uniform local
solvability condition, the result remains valid without imposing the boundary condition 3. of Definition 6.

Proof. See Section 7.2

Theorem 6 is this section’s main result. Since the proof is rather long, it is relegated to the Appendix.
The main idea is to apply Theorem 1 of Milgrom and Roberts [27] or Theorem 1 of Villas-Boas [44] to the
aggregate backward reply correspondence which, crucially, can be shown to be continuous and single-valued
when the local solvability condition holds.18 As discussed at the beginning of this section, Theorem 6 is

16It is worth noting that the condition P ′(Q)− c′′i (si) < 0 is one of Hahn [16]’s two conditions for local stability of Cournot
equilibrium (see Vives [46] Chapter 4 for an extensive discussion of this and related conditions). The other condition is strategic
substitutes which is not needed for the following results. As mentioned by Corchón [7] (p. 156), Corchon’s “strong concavity
condition” reduces precisely to the two Hahn conditions in the Cournot model (except that strategic substitutes is strengthened
to strict strategic substitutes). As a consequence, in Section 5.3 we generalize Corchón [7]’s results for the Cournot model. See
also the discussion immediately prior to Theorem 1.

17This definition uses the lattice and supermodularity conditions for clarity. Positive shocks can be defined more generally
without necessitating any modification in our results, but this would be at the expense of additional notation. See the working
paper version of this paper (Acemoglu and Jensen [2]).

18Without local solvability, the aggregate backward reply correspondence may easily fail to be single-valued. And more
generally it may easily fail to have selections that are “continuous but for jumps up” in the sense of Milgrom and Roberts
[27]. Note that all of these statements remain valid even if best-reply correspondences are continuous and single-valued, in
particular, single-valued best-replies certainly does not imply single-valued backward replies.
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particularly useful in applications that feature neither strategic substitutes or strategic complementarities
such as contests or patent races. In Section 5.2 we present an application of Theorem 6 to this class of
models. Finally note that Theorem 6 — just as our results on strategic substitutes — is global and robust
in the sense of Milgrom and Roberts [27]. In particular, the theorem applies even if an equilibrium selection
“jumps”when t is raised.

Our next result is the analogue of Theorem 3 for nice aggregative games.

Theorem 7. (The Comparative Statics of Entry) Under the conditions of Theorem 6 entry of an
additional player increases the smallest and largest equilibrium aggregates, i.e., if Q∗(I) and Q∗(I) denote
the smallest and largest equilibrium aggregates in a game with I ∈ N players then Q∗(I) ≤ Q∗(I + 1) and
Q∗(I) ≤ Q∗(I + 1) for all I ∈ N. The previous inequalities will be strict if the entrant does not choose the
“inaction” strategy inf SI+1.

Proof. The statement is proved only for the largest equilibrium aggregate (the proof for the smallest

aggregate is similar). Consider the game with I+1 players but where player I+1 is a “dummy player” with

a fixed strategy sI+1 ∈ SI+1. Since sI+1 is exogenous we can define the largest aggregate backward reply

map q(Q, sI+1) as in Section 7.2 (so in terms of that section’s notation, we have here taken t := sI+1). Note

that q(Q, sI+1) must be strictly coordinatewise increasing in sI+1. Let s∗I+1 denote the entrant’s strategy

after entry in the equilibrium associated with the largest equilibrium aggregate Q∗(I + 1). Then Q∗(I) and

Q∗(I + 1) are the largest solutions to, Q(I) = f−1(q(f(Q(I)), inf SI+1)) and Q(I + 1) = f−1(q(f(Q(I +

1)), s∗I+1)), respectively (here f is the strictly increasing and continuous transformation defined in the first

paragraph of Section 7.2). Since f−1(q(f(Q(I+1)), sI+1)) is strictly increasing in sI+1 and inf SI+1 ≤ s∗I+1,

the conclusion now follows immediately from Theorem 1 in Milgrom and Roberts [27] or Theorem 1 in

Villas-Boas [44] (again see Section 7.2 for further details). Clearly, Q∗(I) = Q∗(I + 1) cannot hold unless

s∗I+1 = inf SI+1, hence the aggregate is strictly increasing whenever the entrant does not choose to be

inactive.

Our third and final result characterizes the comparative statics of individual strategies. Unlike any of our
previous results, this theorem directly uses the implicit function theorem. As such it is a local result and also
requires that the strategies for the equilibrium in question are interior. The idea here is very simple: Once
we have established the effect of a change in t on the aggregate Q, we can treat both t and Q as exogenous
variables for any player i and address the individual comparative statics effect through standard techniques.
Here we use the implicit function theorem, but there is nothing in the way of using more sophisticated
methods such as those of Milgrom and Shannon [28].

Theorem 8. (Individual Comparative Statics) Let the conditions of Theorem 6 be satisfied and con-
sider player i’s equilibrium strategy s∗i (t) associated with the smallest (or largest) equilibrium aggregate at
some equilibrium s∗ = s∗(t) given t ∈ T . Assume that the equilibrium s∗ lies in the interior of S and that t
is a positive shock. Then the following results hold.

• s∗i (t) is (coordinatewise) locally increasing in t provided that

−[DsiΨi(s
∗
i , g(s∗), t)]−1DQΨi(s

∗
i , g(s∗), t) ≥ 0

• Suppose that the shock t does not directly affect player i (i.e., πi = πi(s)). Then the sign of each element
of the vector Dts

∗
i (t) is equal to the sign of each element of the vector −[DsiΨi(s

∗
i , g(s∗))]−1DQΨi(s

∗
i , g(s∗)).

In particular, s∗i (t) will be (coordinatewise) locally decreasing in t whenever:

−[DsiΨi(s
∗
i , g(s∗))]−1DQΨi(s

∗
i , g(s∗)) ≤ 0

Proof. By the implicit function theorem, we have:

DsiΨi(si, Q, t)dsi = −DQΨi(si, Q, t)dQ−D2
sitΠi(si, Q, t)dt.
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−[DsiΨi(si, Q, t)]
−1D2

sitΠi(si, Q, t) is equal to Dtbi(Q, t) where bi is player i’s backward reply function.

From Lemma 5 (the proof) this matrix it non-negative. The results therefore follow directly from the fact

that Q increases with t when Q is either the smallest or largest equilibrium aggregate.

An application of this result to contests is given in Section 5.2.

4.1. Further Remarks and Extensions

4.1.1. Alternatives to Local Solvability

We can dispense with the differentiability requirements of nice games, and at the same time weaken the
assumed pseudo-concavity to quasi-concavity. The resulting conditions are interesting both for applications
and because they allow us to discuss the literature’s main results on uniqueness of equilibrium in aggregative
games (Corchón [7] and Cornes and Hartley [9]).

Let us simplify the exposition by focusing on one-dimensional strategy sets. Recall that an aggregator
always has a representation of the form g(s) = H(

∑I
j=1 hj(sj)), whereH and h1, . . . , hi are strictly increasing

functions. Therefore, for any Q in the range of g, we have Q = g(s) ⇔ si = h−1i

[
H−1(Q)−

∑
j 6=i hj(sj)

]
.

Intuitively, this means that if we know the aggregate Q and the aggregate of I − 1 players
∑
j 6=i hj(sj), we

also know the strategy of the last player si. Define a function Gi(Q, y) ≡ h−1i [H−1(Q) − y] that captures
this feature of an aggregative game. Recall from Milgrom and Shannon [28] that a function f(Q, y) satisfies
the single-crossing property in (Q, y) if, for all Q′ > Q and y′ > y, we have

f(Q′, y) ≥ (>) f(Q, y)⇒ f(Q′, y′) ≥ (>) f(Q, y′).

Consider now an aggregative game that satisfies the general compactness and continuity conditions
presented at the beginning of Section 2, and in addition has convex strategy sets and payoff functions that
are quasi-concave in own strategies. It can then be shown that if Πi(Gi(Q, y), Q, t) satisfies the single-
crossing property in (Q, y) for each i ∈ I, then the conclusions of Theorems 6 and 7 continue to hold. When
payoff functions are twice differentiable and the equilibrium is interior, the conclusions of Theorem 8 also
carry over.19

The previous observations provides a useful and simple alternative to the local solvability condition.

Theorem 9. Consider a nice aggregative game with linear aggregator g(s) =
∑
i si and one-dimensional

strategy sets, and assume that for each player i ∈ I:

DsiΨi(si, Q, t) ≤ 0 for all si ∈ Si, Q ∈ X, and t ∈ T . (13)

Then the conclusions of Theorems 6, 7, and 8 hold (without any boundary conditions).

Proof. Since g is linear, Gi(Q, y) = Q − y and Πi(Gi(Q, y), Q, t) = Πi(Q − y,Q, t). The condition

DsiΨi(si, Q) ≤ 0 is equivalent to −DsiΨi = −D2
11Πi−D2

21Πi ≥ 0 for all si and Q. This is in turn equivalent

to Πi(Q − y,Q, t) exhibiting increasing differences in Q and y. Since increasing differences implies the

single-crossing property, the result now follows from the previous observations.

Note that (13) is neither weaker or stronger than the local solvability condition which requires that
DsiΨi(si, Q, t) 6= 0 for all si, Q, and t with Ψi(si, Q, t) = 0.20 If (13) holds with strict inequality throughout,
i.e., if,

DsiΨi(si, Q, t) < 0 for all si ∈ S, Q ∈ X, and t ∈ T , (14)

19For detailed proofs of these claims, see the working paper version of this paper (Acemoglu and Jensen [2]).
20Also note that Theorem 9 is valid even when the game is not nice as explained previously. In particular, pseudo-concavity

of payoff functions in own strategies may be replaced with quasi-concavity of payoff functions in own strategies.
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then local solvability is implied in nice games however (in fact this implies uniform local solvability).
What Corchón [7] calls “strong concavity” is condition (14) together with the strict inequality version of
the strategic substitutes condition (5) of Section 3 (usually called strict strategic substitutes). “Strong
concavity” is of course stronger than anything assumed in this paper, in particular, it implies uniqueness of
equilibrium (Corchón [7], p.156).21

4.1.2. Ordinality

It is useful to note that the local solvability condition is ordinal. Firstly, it is easily seen to be independent
of strictly increasing transformations of the payoff functions, i.e., the local solvability holds for the payoff
function πi(s, t) if and only if it holds for Φi(πi(s, t)) where Φi : R→ R is any strictly increasing and twice
continuously differentiable function, with derivative denoted by Φ′i (where differentiability is needed here
to ensure that the transformed payoff function is also twice continuously differentiable). Secondly, local
solvability holds for any choice of coordinate system allowing one to replace each strategy vector si with a
transformed vector s̃i = ψi(si) where ψi : RN → RN is a diffeomorphism.22 Finally, if local solvability holds
for one aggregator g then it holds also for any aggregator that is a strictly increasing transformation of g.
The straight-forward verifications of this last claim is left to the reader.

Ordinality is important in understanding the condition’s content, for checking the local solvability con-
dition in certain applications, and plays a critical role in the proof of Theorem 6.

5. Applying the Theorems

In this section, we study a number of applications and show that our methods allow very general com-
parative static results in these widely used models. We begin with the public good provision model which,
as we show is a game of strategic substitutes if the private good is normal, and satisfies the uniform local
solvability condition if the public good is strictly normal. If the public good is merely assumed to be normal,
the results from Section 4.1.1 apply. These observations allow us to illustrate both our results on games
with strategic substitutes and nice games under (uniform) local solvability. We then turn to contests which
feature neither strategic substitutes nor strategic complementarities, but, as we show, satisfy the uniform
local solvability condition if players’ cost functions have larger curvature than their contest success functions.
Our third application is the Cournot model where we focus on the case with strategic substitutes and present
what we believe are the literature’s first comparative statics results at the level of generality of Novshek
[30] and Kukushkin [22] — in particular, the results are valid without any quasi-concavity assumptions
on firms’ profit functions thus allowing for non-decreasing returns to scale. Finally, we illustrate how our
results can be applied to games with multidimensional strategies by looking at a model of technology choice
in oligopolistic competition.

5.1. Private Provision of Public Goods

Consider the workhorse model of public good provision originally studied by Bergstrom et al. [6]. There
are I individuals, each making a voluntary contribution to the provision of a unique public good. Individual

21An alternative, and weaker, set of conditions that imply uniqueness are the uniform local solvability condition together
with the following condition:

Ψi(si, Q, t) = 0⇒ siDsiΨi(si, Q, t) +QDQΨi(si, Q, t) < 0 for all si, Q, and t

As explained by Cornes and Hartley [9], these conditions together imply that share functions are decreasing which in turn
implies that the equilibrium aggregate must be unique. For details see Section 9.1. in Cornes and Hartley [9].

22In the new coordinate system, the local solvability condition reads:

Dψ−1
i (s̃i)Ψi(ψ

−1
i (s̃i), Q) = 0⇒ |Ds̃i [Dψ−1

i (s̃i)Ψi(ψ
−1
i (s̃i), Q)]| 6= 0 (15)

But since Dψ−1
i (s̃i) is a full rank matrix, (i) Ψi(ψ

−1
i (s̃i), Q) = 0 ⇔ Dψ−1

i (s̃i)Ψi(ψ
−1
i (s̃i), Q) = 0; and (ii)

|DsiΨi(ψ
−1
i (s̃i), Q)| 6= 0 ⇔ |Ds̃i [Dψ−1

i (s̃i)Ψi(ψ
−1
i (s̃i), Q)]| = |Dψ−1

i (s̃i)DsiΨi(ψ
−1
i (s̃i), Q) [Dψ−1

i (s̃i)]
T | 6= 0. It follows

that the local solvability in the new coordinate system (15) holds if and only if the local solvability condition holds in the
original coordinate system.
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i maximizes her utility function,

ui(ci,

I∑
j=1

sj + s̄) , (16)

subject to the budget constraint ci + psi = mi. Here mi > 0 is income, ci private consumption, and si is
agent i’s contribution to the public good, so that

∑I
j=1 sj + s̄ is total amount of the public good provided.

The exogenous variable s̄ ≥ 0 can be thought of as the state’s baseline provision of the public good that will
be supplied without any private contributions.

Substituting for ci, this is seen to be an aggregative game with reduced payoff functions given by

Πi

si, I∑
j=1

sj ,m, p, s̄

 = ui

mi − psi,
I∑
j=1

sj + s̄

 , for all i ∈ I. (17)

The aggregator is simply g(s) =
∑I
j=1 sj .

23 When s∗ = (s∗i )i∈I is an equilibrium, we refer to g(s∗) =∑I
i=1 s

∗
i as the aggregate equilibrium provision. Let us simplify the exposition and notation here by assuming

that ui is smooth and that strategy sets are intervals of the type Si = [0, s̄i] ⊆ R. The private good is normal
if the following condition holds for all s ∈ S:24

−pD2
12ui

mi − psi,
I∑
j=1

sj + s̄

+D2
22ui

mi − psi,
I∑
j=1

sj + s̄

 ≤ 0. (18)

Since the left-hand side of (18) is equal to D2
sisjπi, the private good is normal if and only if the game

has strategic substitutes (cf. Definition 3). The following results consequently follow directly from those in
Section 3:

Proposition 1. Consider the public good provision game and assume that the private good is normal. Then
there exists an equilibrium. Furthermore:

1. An increase in the state’s baseline provision s̄ leads to a decrease in the smallest and largest aggregate
equilibrium provisions.

2. The entry of an additional agent leads to a decrease in the smallest and largest aggregate equilibrium
provisions by existing agents.

3. A positive shock to agent i will lead to an increase in that agent’s smallest and largest equilibrium
provisions and to a decrease in the associated aggregate provisions of the remaining I − 1 players.

The observation that the public good provision model has a pure strategy Nash equilibrium assuming
merely that the private good is normal appears to be new. The absence of any concavity assumptions
highlights that the results of Proposition 1 could not have been derived using the implicit function theorem.25

23Cornes and Hartley [10] study a more general class of public good provision models where the aggregator is not necessarily
linear. As their analysis demonstrates, the resulting model is (still) an aggregative game, and it is therefore a straightforward
exercise to extend the result below to it, which we do not do to save on notation.

24One way to verify this normality condition is by means of Topkis’ theorem: If we substitute for si in (16) instead of
for ci, (18) is precisely the condition for the objective to exhibit increasing differences in ci and mi. Note that weaker but
less standard conditions for normality are available. For example, we could instead of increasing differences in ci and mi
impose the single-crossing property in ci and mi (see footnote 9). Crucially, a normal private good is equivalent to descending
best-response correspondences regardless of which normality condition we settle on (again see footnote 9).

25This statement also applies to Corchón [7], whose comparative statics results on games with strategic substitutes are indeed
based on the implicit function theorem. But even ignoring this, it is easy to see that Corchon’s “strong concavity assumption”
amounts to assuming that both the private and public goods are strictly normal. This “double normality” assumption (as it
is often called) dates all the way back to the original article of Bergstrom et al. [6] and is also in force in Cornes and Hartley
[10] mentioned above.
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If instead we assume that the public good is strictly normal, we can obtain a number of results using
the theorems from Section 4. Indeed, suppose that the payoff function is pseudo-concave (which was not
assumed for Proposition 1). Then the public good will be strictly normal if the following condition holds
for all s ∈ S:26

DsiΨi(si, Q) = p2D11ui(mi − psi, Q)− pD21ui(mi − psi, Q) < 0 (19)

It is clear that (19) implies the uniform local solvability condition. In addition, it implies that an increase
in mi or a decrease in p constitute positive shocks, i.e., D2

simΠi ≥ 0 and D2
sipΠi ≤ 0, respectively. The next

proposition therefore follows immediately from Theorems 6-8:

Proposition 2. Consider the public good provision game and assume that the public good is strictly normal,
that payoff functions are pseudo-concave in own strategies and that strategy sets are convex. Then there exists
an equilibrium. Furthermore:

1. Any positive shock to one or more of the agents (e.g., a decrease in p, or increases in one or more
income levels, m1, . . . ,mI) leads to an increase in the smallest and largest aggregate equilibrium pro-
visions.

2. The smallest and largest aggregate equilibrium provisions are increasing in the number of agents.

3. The changes in 1 and 2 above are associated with an increase in the provision of agent i if the private
good is inferior for this agent, and with a decrease in agent i’s provision if the private good is normal
and the shock does not directly affect the agent.

Proposition 2 could also be obtained under weaker conditions by applying Theorem 9. Specifically, if
the public good is normal (condition (19) holding as weak inequality), the conditions of that theorem are
satisfied and Proposition 2 remains valid. Note also that if one imposes strict normality of the private and
public goods simultaneously, then the equilibrium will be unique as proved by Bergstrom et al. [6].

5.2. Models of Contests and Fighting

Consider a contest where I agents are competing to obtain the prize (or fighting for victory). Agent
i ∈ I’s payoff function is,

πi (si, s−i) = Vi ·
hi (si)

R+H
(∑I

j=1 hj (sj)
) − ci (si) , (20)

where si denotes agent i’s effort, ci : R+ → R+ his cost function, and Vi > 0 his valuation of the prize. The
contest success functions hi : R+ → R+, i ∈ I, together with H : R+ → R+ and the parameter R > 0 specify
the likelihood of winning the prize. Throughout, all functions are assumed to be strictly increasing and twice
continuously differentiable. In addition, strategy sets are assumed to be compact intervals, Si = [0, s̄i] for
all i. The formulation chosen here is fairly general, and allows not just for standard contests (where often R
is taken equal to zero), but also includes models of rent-seeking such as Dixit [12] and Skaperdas [38], as well
as patent races in the spirit of Loury [23]. It is clear that this is an aggregative game with the aggregator

g(s) = H(
∑I
j=1 hj (sj)).

Contests generally feature neither strategic substitutes nor strategic complements. Therefore, the results
in Section 3 do no apply, nor do any of the well-known results on games with strategic complementarities.
In this case, the most obvious strategy for deriving comparative static results is to use the implicit function
theorem. Unfortunately, the implicit function theorem approach yields ambiguous conclusions unless one
imposes additional, strong assumptions. For this reason, previous treatments have restricted attention to
special cases of the above formulation. For example, Tullock [43] studied two-player contests, while Loury
[23] focused on symmetric contests under (ad hoc) stability conditions. The most general comparative statics

26The equivalence between strict normality of the public good and (19) follows since ∂si(m, p,
∑
j 6=i sj)/∂m = α(pD2

12ui −
p2D2

11ui) where α > 0 is a constant.
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results available in the literature are to our knowledge those of Nti [29] whose results apply to symmetric
equilibria (in particular, agents must be identical) under the additional assumptions that H = id (the
identity function), that hi = h for all i and concave (a symmetric, concave contest success function), and
that costs are linear (ci(si) = c̄si for some constant c̄ > 0).

Using the results of Section 4, we can establish considerably more general and robust results on this
important class of models. In particular, no symmetry assumptions are imposed what so ever.27 To apply
the results of Section 4, we must verify the local solvability condition. Direct calculations yield

Ψi(si, Q) = Vi ·

[
h′i (si)

R+Q
−
H ′
(
H−1(Q)

)
h′i(si)hi(si)

(R+Q)
2

]
− c′i (si) ,

and

DsiΨi(si, Q) =
Vih
′′
i (si)

h′i(si)
·

[
h′i(si)

R+Q
−
H ′
(
H−1(Q)

)
h′i(si)hi(si)

(R+Q)
2

]
− c′′i (si)− Vi

H ′
(
H−1(Q)

)
(h′i(si))

2

(R+Q)
2 .

Therefore, when Ψi(si, Q) = 0, we have

DsiΨi =
h′′i (si)

h′i(si)
c′i (si)− c′′i (si)− Vi ·

H ′
(
H−1(Q)

)
(h′i(si))

2

(R+Q)
2 .

Dividing both sides by c′i(si) > 0, we immediately see that DsiΨi < 0 whenever Ψi(si, Q) = 0 and the
following condition is satisfied:

h′′i (si)

h′i(si)
≤ c′′i (si)

c′i (si)
for all si ∈ Si. (21)

When si > 0, this can also be written,
h′′
i (si)si
h′
i(si)

≤ c′′i (si)si
c′i(si)

for all si ∈ Si, which says that the cost function

must have a larger curvature than the contest success function. Intuitively, this simply means that the cost
function is “more convex” than the success function (note that this statement does not imply that either
function must be convex!). Parallel curvature conditions play a central role in industrial organization, e.g.,
in the analysis of price discrimination (Schmalensee [34]).

Note that since DsiΨi < 0, condition (21) implies the uniform local solvability condition. Hence the
conclusions of Theorem 6 are valid without any boundary conditions on payoff functions. 1. and 2. of the
following proposition now follow directly from Theorems 6-7. Part 3. of this proposition is a straightforward
application of Theorem 8 (the algebraically cumbersome details are placed in an appendix along with a
verification of the existence claim).

Proposition 3. Consider a contest with payoff functions (20) and suppose that H is strictly increasing and
convex, hi and ci are strictly increasing, that all of these functions are twice continuously differentiable, and
that condition (21) is satisfied for each agent. Then there exists an equilibrium. Furthermore:

1. The smallest and largest aggregate equilibrium efforts are increasing in any positive shock (e.g., a
decrease in R or an increase in Vi for one or more players).

2. Entry of an additional player increases the aggregate equilibrium effort.

27Since we do not assume concavity of payoff functions, the following proposition also generalizes the existence result of
Szidarovszky and Okuguchi [35]. Note that when R = 0, H(0) = 0, and hi(0) = 0 for all i (as assumed by Szidarovszky
and Okuguchi [35]), the payoff functions are not well-defined when all agents choose zero effort. This poses a minor difficulty
for the proof of existence, but it can be easily overcome: Simply consider a sequence of games all of which have Rn > 0
but are otherwise identical, and use the result below. Letting Rn → 0 we get for each n an equilibrium, and by the upper
hemi-continuity of the best-reply correspondences, the limit point of any convergent subsequence of equilibria will then be an
equilibrium for the game with R = 0.
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3. Finally, the effects on the individual agents’ effort levels can be predicted as follows. Define the real-
valued function η : R→R:

η(Q∗) ≡

[
2H ′

(
H−1(Q∗)

)
(R+Q∗)

−
H ′′

(
H−1(Q∗)

)
H ′ (H−1(Q∗))

]−1
.

Then the changes in parts 1 or 2 above are associated with an increase in the effort of player i ∈ I
at the corresponding equilibrium aggregate Q∗ whenever player i is “dominant” in the sense that
hi (s∗i ) ≥ η (Q∗). Conversely, if i is “not dominant”, i.e., hi (s∗i ) < η (Q∗), then the changes in parts
1 and 2 decrease player i’s effort provided that the shock does not affect this player directly (e.g.,
corresponding to a decrease in another player’s costs).

Proof. 1. and 2. were verified above. For the remaining statements see Section 7.3 in the Appendix.

Note that when H = hi = id (the identity function), and R = 0, we have η(Q∗) = Q∗/2, and so player
i is “dominant” in the sense of 3. if and only if s∗i ≥ Q∗/2. In a two-player contest, this precisely means
that she is the “favorite” to win the prize in the sense of Dixit [12]. With I > 2 players, being “dominant”
means that she is more likely to win the prize than everybody else combined.

Also observe that the conditions of Proposition 3 are satisfied if H is the identity function, ci is convex,
and hi is concave.28 Proposition 3 also covers important cases where hi is not concave. For example,
Hirshleifer [17] proposes the logit specification of the contest success function, with H = id (the identity
function), and hi(si) = ekisi (ki > 0), and studies the special case where ki = k for all i under additional
assumptions. In such cases, Proposition 3 continue to apply as long as ci has larger curvature than hi at all
si ∈ Si. For example if ci(si) = elisi where li ≥ ki, this will be the case.

5.3. Cournot Oligopoly

Consider the Cournot model of quantity competition. There are I firms, each choosing si ∈ [0, s̄i] to
maximize profits:

πi(s, t) = siP

 I∑
j=1

sj + t̄

− ci(si, ti). (22)

Here ti is a parameter that affects the cost ci of firm i, and t̄ parameterizes shifts in direct demand (Q =
D(p) − t̄ ⇔ p = P (Q + t̄), where D is the direct demand function and P the indirect demand function).
It is clear that increases in t̄ (downward shifts in direct demand) are shocks that hit the aggregator in the
sense of Definition 4. We assume throughout that D2

sitici ≤ 0, i.e., that an increase in ti is a positive shock.
Clearly, this game is aggregative with g(s) =

∑
j sj . Moreover, it features strategic substitutes provided

that
P ′(Q+ t̄) + siP

′′(Q+ t̄) ≤ 0, (23)

where Q ≡
∑I
j=1 sj . For example, this will hold if inverse demand is strictly decreasing and the elasticity

of P ′, εP (Q) = P ′′ (Q)Q/P ′ (Q) is less than 1 (naturally, concave inverse demand is in turn sufficient for
this).29 Note that this condition is completely independent of the cost function, hence the results to follow
are valid if firms’ production technologies exhibit non-decreasing returns to scale. It is also not required that
strategy sets are convex.30 As in the previous applications, the following follows straight from our results
in Section 3:

28Szidarovszky and Okuguchi [35] prove that these conditions imply uniqueness of equilibrium if in addition R = 0 in (20),
see also Cornes and Hartley [8] for a very simple proof of this result based on the “share function approach” discussed in the
Introduction and elsewhere. Such uniqueness is not necessary or assumed in Proposition 3, but if it holds one of course gets
“sharper” conclusions that refer to the unique equilibrium aggregate.

29Amir [4] studies conditions under which the Cournot model will be a game of strategic substitutes or complements (our
results on strategic substitutes are equally valid under the ordinal conditions of Milgrom and Shannon [28] which is what Amir
focuses on).

30To the best of hour knowledge, there are no existing comparative statics results for the Cournot model that hold at this
level of generality.
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Proposition 4. Consider the Cournot model and assume that (23) holds. Then this is a game with strategic
substitutes and the following comparative statics results apply:

1. An increase in t̄ leads to a decrease in the smallest and largest aggregate equilibrium outputs.

2. The entry of an additional firm leads to a decrease in the smallest and largest aggregate equilibrium
outputs of the existing firms.

3. A positive shock to firm i (an increase in ti) will lead to an increase in that firm’s smallest and largest
equilibrium outputs and to a decrease in the associated aggregate equilibrium outputs of the remaining
I − 1 firms.

Notice that part 3. directly generalizes the duopoly result of Vives [46] to any number of firms (in the
duopoly case, one can reverse the order on one of the firm’s strategy sets and obtain a game with strategic
complementaritites).

If instead we were to assume concavity (or pseudo-concavity), comparative statics can be obtained by use
of the results from Section 4. In the absence of strategic substitutes (e.g., Amir [4]), the comparative statics
results one obtains in this way will be new. We omit the details, but see the paragraph after Definition 8
for conditions under which the local solvability condition holds in the Cournot model.

5.4. Technology Choice in Oligopoly

As a final application, we consider games in which oligopoly producers make technology choices as well
as setting output. Thus strategy sets are of dimension 2, which allows us to illustrate how our results
can be applied when strategy sets are multidimensional. For a general and related discussion of models of
technological choice and competition see Vives [48].

Consider a Cournot model with I heterogeneous firms. Let q = (q1, ..., qI) be the output vector and
a = (a1, ..., aI) the technology vector. Throughout, both are assumed to lie in compact sets. Let us define

Q =
∑I
j=1 qj as aggregate output. Profit of firm i is

Πi (qi, ai, Q) ≡ πi (q, a) = qiP (Q)− ci (qi, ai)− Ci (ai) ,

where P is the (decreasing) inverse market demand function, the cost function ci is a function of firm
i’s quantity and technology choices, and Ci is the cost of technology adoption. Assume that P , ci and
Ci are twice differentiable for all i, P is strictly decreasing (P ′ (Q) < 0 for all Q), Ci is convex, and
∂ci (qi, ai) /∂qi∂ai < 0 (for each i), so that greater technology investments reduce the marginal cost of
production for each firm.

The first-order necessary conditions for profit maximization are

∂πi
∂qi

= P ′ (Q) qi + P (Q)− ∂ci (qi, ai)

∂qi
= 0

∂πi
∂ai

= −∂ci (qi, ai)

∂ai
− ∂Ci (ai)

∂ai
= 0.

We assume that these first-order conditions hold at any optimum (including optima at the boundary, cf.
part 3. of Definition 6). Let us now consider the effect of a decline in the cost of technology investment by
one of the firms (i.e., a shift in Ci), which clearly corresponds to a positive shock. The results from Section
4 suggest that we should check the local solvability condition. In particular, consider the matrix:

D(qi,ai)Ψi =

(
P ′ (Q)− ∂2ci

∂q2i
− ∂2ci
∂qi∂ai

− ∂2ci
∂qi∂ai

−∂
2ci
∂a2i
− ∂2Ci

∂a2i

)

for each i, where in terms of the notation of Section 4 we have taken si = (qi, ai). When ci (qi, ai) is convex,
the matrix (

−∂
2ci
∂q2i

− ∂2ci
∂qi∂ai

− ∂2ci
∂qi∂ai

−∂
2ci
∂a2i

)
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is negative semi-definite. Since P ′ (Q) < 0 and −∂2Ci/∂a2i ≤ 0, this is sufficient to guarantee that |DΨi| < 0.
Therefore, whenever each ci (qi, ai) is convex, the local solvability condition is satisfied. Hence, a decline
in the cost of technology investments for one of the firms will necessarily increase total output. Similarly,
the effects of an increase in demand on output and technology choices can be determined robustly. The
following proposition summarizes these results (proof omitted):

Proposition 5. Consider the technology adoption game described above and assume that the cost functions
ci = ci(qi, ai) (for each i) are convex. Then the local solvability condition holds and as a consequence:

1. Any positive shock to one or more of the firms (e.g., a decrease in marginal costs parameterized via
ci = ci(qi, ai, t)) will lead to an increase in total equilibrium output.

2. Entry of an additional firm will lead to an increase in total output.

Note also that oligopoly-technology game is a game with strategic substitutes when ∂2ci(qi, ai)/∂qi∂ai ≤
0.31 So when technological development lowers the marginal cost of producing more input, the results from
Section 3 will apply and produce a parallel set of comparative statics results.

6. Conclusion

This paper presented robust comparative static results for aggregative games and showed how these
results can be applied in several diverse settings. In aggregative games, each player’s payoff depends on her
own actions and on an aggregate of the actions of all players (for example, sum, product or some moment
of the distribution of actions). Many common games in industrial organization, political economy, public
economics, and macroeconomics can be cast as aggregative games. Our results focused on the effects of
changes in various parameters on the aggregates of the game. In most of these situations the behavior of
the aggregate is of interest both directly and also indirectly, because the comparative statics of the actions
of each player can be obtained as a function of the aggregate. For example, in the context of a Cournot
model, our results characterize the behavior of aggregate output, and given the response of the aggregate
to a shock, one can then characterize the response of the output of each firm in the industry.

We focused on two classes of aggregative games: (1) aggregative games with strategic substitutes and (2)
nice aggregative games, where payoff functions are twice continuously differentiable, and (pseudo-)concave
in own strategies. For instance, for aggregative games with strategic substitutes, we showed that:

1. A change in a parameter that directly affects the aggregate — such as a negative shock to demand in
the Cournot model — will lead to a decrease in the aggregate (in the sense that the smallest and the
largest elements of the set of equilibrium aggregates increase).

2. Entry of an additional player decreases the (appropriately defined) aggregate of the existing players.

3. A “positive” idiosyncratic shock, defined as a parameter change that increases the marginal payoff of
a single player, leads to an increase in that player’s strategy and a decrease in the aggregate of other
players’ strategies.

We also provided parallel results for nice games under a condition called the local solvability condition.
Those results apply to for example contests which are not games of strategic substitutes (nor are they games
of strategic complementarities).

The framework developed in this paper can be applied to a variety of settings to obtain “robust” compar-
ative static results that hold without specific parametric assumptions. In such applications, our approach
often allows considerable strengthening of existing results and also clarifies the role of various assumptions
used in previous analyses. We illustrated how these results can be applied and yield sharp results using
several examples, including public good provision games, contests, and oligopoly games with technology
choice.

31This condition ensures that payoff functions are supermodular in own strategies. It is easy to check that payoff functions
also exhibit decreasing differences in own and opponents’ strategies.
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Throughout this paper, the aggregate has been assumed to be one-dimensional. It is possible to extend
the framework to allow for multi-dimensional aggregates (Acemoglu and Jensen [2]). Other restrictions of
this paper are that strategy sets are assumed to be finite dimensional and the set of players finite. We
conjecture that the results presented in this paper can be generalized both to games with infinitely many
players and games with infinite-dimensional strategy sets. Indeed, with the appropriate definition of an
aggregator for a game with infinitely many players (e.g., along the lines of the separability definitions in
Vind and Grodal [45], Chapters 12-13), our main results and in fact even our proofs remain valid in this
case. Similarly, with the appropriate local solvability condition, all of our results on nice games appear to
generalize to games with infinite-dimensional strategy sets.

7. Appendix

7.1. Details of the Novshek Selection from the Proof of Theorem 2

In this section we give a detailed exposition of the Novshek selection from the proof of Theorem 2. Note
that the construction here is slightly different from the original one in Novshek [30], but the basic intuition
is the same. Aside from being somewhat briefer, the present way of constructing the “Novshek selection”
does not suffer from the “countability problem” in Novshek’s proof pointed out by Kukushkin [22], since we
use Zorn’s Lemma to construct the selection.

Definition 10. (Novshek Selections) Let Qa, Qb ∈ R, Qa ≤ Qb. A selection q : [Qa, Qb] → R from Z
(i.e., a function with q(Q, t) ∈ Z(Q, t) for all Q ∈ [Qa, Qb]) is called a Novshek selection (on [Qa, Qb]) if the
following hold for all Q ∈ [Qa, Qb]:

1. q(Q, t) ≥ z for all z ∈ Z(Q, t).

2. q(Q, t) ≤ Q.

3. The backward reply selections bi(Q, t) ∈ B̃i(Q, t) associated with q (i.e., backward reply selections
satisfying q(Q, t) =

∑
j bj(Q, t) all Q) are all decreasing in Q on [Qa, Qb], i.e., Q′′ ≥ Q′ ⇒ bi(Q

′′, t) ≤
bi(Q

′, t).

Before we can construct a suitable Novshek selection, we need to establish the existence of an element
Qmax > 0 as in Figure 1, with the property that q < Qmax for all q ∈ Z(Qmax, t). This can be done by
suitably modifying an argument of Kukushkin [22] (p. 24, l.18-20).

Lemma 1. There exists an element Qmax > 0 such that q < Qmax for all q ∈ Z(Qmax, t).

Proof. Let Di denote the subset of R upon which hi ◦ R̃i is defined, i.e., write γ ∈ Di if and only if

hi ◦ R̃i(γ) 6= ∅. Since hi ◦ R̃i is upper hemi-continuous, Di is closed. It is also a bounded set since R̃i ⊆ Si
and each Si is compact. Consequently, Di has a maximum, which we denoted by di. Then extend hi ◦ R̃i
from Di to Di ∪ (di, Q

max] by taking hi ◦ R̃i(d) ≡ ⊥i all d ∈ (di, Q
max]. Here ⊥i can be any small enough

element (for each player i ∈ I) such that
∑
i⊥i < Qmax, ⊥i ≤ minhi ◦ R̃i(di), and Qmax −⊥i ∈ (di, Q

max].

With Z defined as above but based on the previous extension of hi ◦ Ri to Di ∪ (di, Q
max], it is clear that

Z(Qmax, t) = {
∑
i⊥i} < Qmax which is what we wanted to show.

Note that, strictly speaking, Z in the previous lemma refers to the aggregate backward reply corre-
spondence after best-response correspondences have been extended as in the proof. In particular, therefore
Z(Qmax, t) 6= ∅. Let D ⊆ (−∞, Qmax] denote the subset of R upon which (the extended version of) Z(·, t)
is well-defined. Abusing notation slightly, let [Q′, Qmax] ≡ D ∩ {Q : Q′ ≤ Q ≤ Qmax}. Any such interval
[Q′, Qmax] will be compact because D is compact (see the proof of the previous lemma for an identical
argument).

Lemma 2. There exists an element Qmin ≤ Qmax and a well-defined Novshek selection q : [Qmin, Qmax]→ R
on [Qmin, Qmax]. The element Qmin will be minimal in the sense that if Q′ < Qmin, then there will not exist
a Novshek selection on [Q′, Qmax].
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Proof. Denote by Ω ⊆ 2R the set of all “intervals” [Q′, Qmax] upon which a selection with properties 1.-3.

exists. Notice that {Qmax} ∈ Ω so Ω is not empty. Ω is ordered by inclusion since for any two elements

ω′, ω′′ in Ω, ω′′ = [Q′′, Qmax] ⊆ [Q′, Qmax] = ω′ ⇔ Q′′ ≤ Q′. A chain in Ω is a totally ordered subset (under

inclusion). It follows directly from the upper hemi-continuity of the backward reply correspondences that

any such chain with an upper bound has a supremum in Ω (i.e., Ω contains an “interval” that contains each

“interval” in the chain). Zorn’s Lemma therefore implies that Ω contains a maximal element, i.e., there

exists an interval [Qmin, Qmax] ∈ Ω that is not (properly) contained in any other interval from Ω.

7.2. Proof of Theorem 6

We begin by noting that there is no loss of generality in using the aggregator g(s) ≡
∑
i hi(si) in

the following, and assuming that minsi∈Si
hi(si) = 0 for all i. To see why, recall that the local solvability

condition is independent of any strictly increasing transformation of the aggregator as well as any coordinate
shift (Section 4.1.2). Let the original aggregator be g̃(s) = H(

∑
i h̃i(si)). We begin by transforming strategy

vectors by multiplying with a positive constant such that maxsi∈Si h̃i(si)−minsi∈Si h̃i(si) = 1. Next, we use
the transformation f(z) = H−1(z)−

∑
i minsi∈Si h̃i(si) to get the new aggregator g(s) ≡ f(g̃(s)) =

∑
i hi(si),

where hi(si) ≡ h̃i(si)−minsi∈Si
h̃i(si). Clearly, minsi∈Si

hi(si) = 0 for all i with this transformed aggregator.
Let Ri : S−i×T → Si be the best response correspondence of player i and R̃i the transformed and reduced

best response correspondence defined by R̃i(
∑
j 6=i hj(sj), t) ≡ hi ◦Ri(s−i, t). Then define the (transformed)

backward reply correspondence Bi of player i by means of:

ηi ∈ Bi(Q, t)⇔ ηi ∈ R̃i(Q− ηi, t)

It is clear that Q is an equilibrium aggregate given t ∈ T if and only if Q ∈ Z(Q, t) ≡
∑
iBi(Q, t) (the

correspondence Z is the aggregate backward reply correspondence already studied in the proof of Theorem
2).

Figure 8: η ∈ Bi(Q) [η ∈ Bi(Q+ ∆)] if and only if the solid [dashed] curve intersects the diagonal at η.

We are going to suppress t to simplify notation in what follows. By definition, η ∈ Bi(Q)⇔ η ∈ R̃i(Q−η).
Graphically, η lies in Bi if and only if the correspondence R̃i(Q − ·) intersects with the diagonal/45◦-line
at η. A crucial feature of the graphs of R̃i(Q − ·) for different values of Q, is that these correspond to
“horizontal parallel shifts” of each other. To be precise, consider the solid curve in figure 1 which is the
graph of R̃i(Q− ·) for some choice of Q. Now increase Q to Q+ ∆, ∆ > 0. Because of the additive way in
which η and Q enter into R̃i, the graph of R̃i(Q+ ∆− ·) will precisely be a parallel right shift of the graph
of R̃i(Q − ·) with each point on the former laying precisely ∆ to the right of each point on the latter (the
dashed curve in figure 8). Similarly, if ∆ < 0, the graph will be shifted to the left in a parallel fashion. It is
this straight-forward observation that drives essentially the entire proof. We begin with the following:

Lemma 3. When Si ⊆ R and the uniform local solvability condition holds, we may for each player i ∈ I
replace Ψi with a function Ψ̃i such that (i) ηi ∈ Bi(Q, t) if and only if Ψ̃i(si, Q, t) = 0 for some si ∈ Si with
ηi = hi(si), and (ii) DsiΨ̃i(si, Q, t) < 0 whenever Ψ̃i(si, Q, t) = 0.
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Proof. We suppress t in the following to simplify notation. Obviously, the statement is valid for any ηi in the

interior of Si by assumption. So there is only something to prove when Si ⊆ R and η′i ∈ Bi(Q′)∩{0,maxSi}
(i.e., is on the boundary) and Ψi(η

′
i, Q
′) 6= 0. Consider here the case where η′i = 0 (the proof is the same

when η′i = maxSi). Let [Qa, Qb] be the maximal interval (necessarily closed) for which {0} ∈ Bi(Q) for all

Q ∈ [Qa, Qb]. It is easy to show that we must have Ψi(0, Qa) = Ψi(0, Qb) = 0: by varying Q either below Qa
[or above Qb] we get a continuous, non-constant extension bi(Q) ∈ Bi(Q) with bi(Qa) = 0 [bi(Qb) = 0]. In

particular, such an extension must lie in the interior of Si for Q 6= Qa [Q 6= Qb]. But then Ψi(bi(Q), Q) = 0

for all Q 6= Qa, and by continuity of bi and Ψi follows that Ψi(0, Qa) = 0 [Ψi(0, Qb) = 0 respectively].

Importantly, by uniform local solvability Ψi(0, Qa) < 0 and Ψi(0, Qb) < 0. We may therefore replace

Ψi with a function Ψ̃i which equals Ψi outside any interval [Qa, Qb] and where: (i) Ψ̃i(0, Q) = 0 for all

Q ∈ [Qa, Qb], and (ii) DsiΨ̃i(0, Q) < 0 for all Q ∈ [Qa, Qb]. Clearly, we can also choose Ψ̃i such that the

resulting “replacement” of Ψi will be continuously differentiable in si. Observe that without uniform local

solvability, we might not have been able to find a replacement satisfying (ii) because we could have, say,

DsiΨi(0, Qa) < 0 and DsiΨi(0, Qb) > 0.

Note that the conclusion of lemma 3 is true by assumption if boundary conditions hold. Note also that
in the multi-dimensional case where boundary conditions are always in force, the statement remains valid by
assumption if we replace (ii) with |DsiΨi(si, Q, t)| 6= 0 whenever Ψi(si, Q, t) = 0 (this is the local solvability
condition). We can now prove a key observation:

Lemma 4. Bi(Q) consists of at most one element (hence Bi is single-valued whenever it is well-defined).

Proof. As is clear graphically, if Bi(Q) is not single-valued for some Q, there must lie at least one point

(xi, yi) on the graph of R̃i(Q − ·) ((xi, yi), yi ∈ R̃i(Q − xi)) with the property that a line with slope +1

intersects the graph precisely at (xi, yi) and in a neighborhood either lies entirely below or entirely above the

graph. Since yi ∈ R̃i(Q+yi− (xi+yi)), it follows that xi+yi ∈ Bi(Q+yi). But either raising or lowering Q

will now lead to two continuous selections from Bi, call them bi and b̃i which take the same value at Q′+ yi
(i.e., bi(Q

′ + yi) = b̃i(Q
′ + yi)) but take different values at all Q + yi with Q 6= Q′ and Q sufficiently close

to Q′. We are now going to show that this is impossible under the local solvability condition.

Begin by noting that in the one-dimensional case by lemma 3 (denoting here Ψ̃i of that lemma again by

Ψi), η
′
i ∈ Bi(Q′)⇒ [Ψi(s

′
i, Q
′) = 0 for some s′i ∈ Si with hi(s

′
i) = η′i]. And since then DsiΨi(s

′
i, Q
′) < 0, the

implicit function theorem implies the existence of a locally unique, differentiable function fi : (Q′−ε,Q′+ε)→
Si such that Ψi(fi(Q), Q) = 0 for all Q ∈ (Q′− ε,Q′+ ε), and such that fi(Q

′) = s′i. This clearly contradicts

the existence of selections bi and b̃i as described above and the proof is complete. In the multidimensional

case, the implicit function theorem still applies due to the local solvability condition, so we still get functions

bi and b̃i as described. But things are complicated by the fact that we may have two different solutions to

Ψi(·, Q′) = 0: Ψi(si, Q
′) = 0 and Ψi(s̃i, Q

′) = 0, si 6= s̃i with η′i ≡ hi(si) = hi(s̃i). Intuitively, the problem

here is that local uniqueness in terms of si does not (seem!) to imply local uniqueness in terms of ηi = hi(si)

as stated in the lemma. Since si, s̃i ∈ Ri(Q′ − η′i), the above situation can of course only arise if Ri is not

single-valued at Q′ − η′i. In fact, it can only happen if R̃i is not single-valued at Q′ − η′i since otherwise

ηi = hi(si) for all si ∈ Ri(Q′ − η′i) (a convex set), which definitely contradicts local uniqueness of solutions

to Ψi(·, Q′) = 0. Now, when such multiplicity in terms of si arises, the implicit function theorem will give

us two functions fi and f̃i such that Ψi(fi(Q), Q) = 0, Ψi(f̃i(Q), Q) = 0, and fi(Q) 6= f̃i(Q) for Q close to

Q′ (in addition, fi(Q
′) = si and f̃i(Q

′) = s̃i). Since hi, fi and f̃i are differentiable at Q′, Q − hi(fi(Q))

and Q − hi(f̃i(Q)) will obviously be differentiable at Q′. Neither term can be constant in Q: If this were

the case for, say, Q − hi(fi(Q)) we would have hi(fi(Q)), η′i ∈ R̃i(Q − hi(fi(Q)) = R̃i(Q
′ − η′i) where

necessarily hi(fi(Q)) 6= hi(fi(Q
′)) = η′i (for Q − hi(fi(Q)) to be locally constant at Q′, fi(Q) obviously

cannot be locally constant at Q′). But then we can for any Z close to Q′ − η′i find Q and Q̃ such that
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Z = Q − hi(fi(Q)) = Q̃ − hi(f̃i(Q̃)), and since fi(Q), f̃i(Q̃) ∈ R̃i(Z), R̃i must be multi-valued not just at

Q′ − η′i but also at any Z close to Q′ − η′i. This again leads to a contradiction and the proof is complete.

In the following, let bi be the function such that Bi(Q) = {bi(Q)} (of course, bi(Q) is only well-defined if
Bi(Q) 6= ∅). Let θi ≡ max R̃i(0) and ρi ≡ min R̃i(xi) where xi ≡

∑
j 6=i maxsj∈Sj

hj(sj). Since θi ∈ R̃i(θi−θi)
and ρi ∈ R̃i(xi + ρi − ρi), we must have bi(θi) = θi and bi(xi + ρi) = ρi. It can never be the case that
xi + ρi = θi.

32 Hence the previous construction marks two different points on the backward reply function
bi. Assume first that θi < xi + ρi. Then the graph of R̃i(xi + ρi − η) must lie strictly below the 45◦ line
for all η > ρi since if not it would lie everywhere above the diagonal, which would imply that Bi(θi) = ∅
(observe that we are here using that Bi is single-valued since this implies that R̃i(Q − ·) cannot intersect
with the 45◦-line twice). Likewise, the graph of R̃i(θi− η) must lie completely above the 45◦-line for η < θi,
otherwise we would have Bi(xi + ρi) = ∅. In case θi > xi + ρi, the “dual” conclusions apply for the same
reasons (by “dual” we mean that R̃i(xi + ρi − η) lies above the 45◦ line for η > ρi and R̃i(θi − η) lies
below the 45◦-line for η < θi). From now on we are going to focus on the first of the above cases where
θi < xi + ρi. But all arguments immediately carry over to the case where θi > xi + ρi so that bi will be
defined on [xi + ρi, θi] instead of [θi, xi + ρi] (simply interchange the left and right end-points θi and xi + ρi
throughout the following arguments).

The next three conclusions follow immediately from the fact that a change in Q, from Q to Q+ ∆ say,
corresponds to an exact parallel shift of the graph of R̃i(Q−·) either to the left ∆ < 0 or to the right ∆ > 0.
First, we see that Bi(Q) = ∅ for all Q 6∈ [θi, xi+ρi]. Secondly, we see that Bi(Q) 6= ∅ for all Q ∈ [θi, xi+ρi],
so on this interval the function bi is actually well-defined. Finally, we see that min R̃i(Q − ηi) > ηi for
ηi < bi(Q) and max R̃i(Q − ηi) < ηi for ηi > bi(Q). Graphically, this last observation means that bi(Q)
corresponds to a point where R̃i(Q− ·) intersects with the 45◦-line “from above”.

Let θ = maxi θi and δ = mini[xi + ρi]. It is clear that,

z(Q) =
∑
i

bi(Q),

is a well-defined and continuous function precisely on the interval [θ, δ] and that z(θ) ≥ θ and z(δ) ≤ δ. We
have suppressed t from the previous exposition. When t is included, all of the conclusions still hold of course
only now we must write z(Q, t) =

∑
i bi(Q, t) and this will be well-defined for all Q ∈ [θ(t), δ(t)], where both

θ(t) and δ(t) are increasing in t (that these are increasing in t follow directly from the definition of these
together with the definition of a positive shock). We may without loss of generality assume that the increase
in t takes place in just a single coordinate and, abusing notation slightly, we then have t ∈ T = [a, b] ⊆ R (if
several of t’s coordinates are increased, simply repeat the argument for each coordinate and use that in each
case the aggregate will increase). It is convenient to extend z(·, t) such that this is defined on [θ(a), δ(b)]
for all t. We do so simply by taking z(Q, t) = z(θ(t), t) for all θ(a) ≤ Q < θ(t) and z(Q, t) = z(δ(t), t)
for I − 1 + ρ(b) ≥ Q ≥ δ(t). Crucially, this will not introduce any new equilibrium aggregates since
z(Q, t) = z(θ(t), t) > Q for all Q < θ(t), and Q < z(Q, t) = z(δ(t), t) for all Q > δ(t). We now have:

Lemma 5. z(Q, t) is increasing in t.

Proof. Due to the way the extension of z was made above (in particular, the fact that θ(t) and δ(t) are

both increasing in t), the conclusion immediately follows if we can show that each bi(Q, t) is increasing in

t. bi(Q, t) corresponds to the intersection between R̃i(Q− ·, t) and the 45◦-line where R̃i(Q− ηi) is strictly

above (below) the 45◦-line for ηi < bi(Q) (ηi > bi(Q)). By assumption, t is a positive shock in the sense

that the smallest and largest selections of R̃i(Q−ηi, t) are increasing in t (for all fixed Q and ηi). Moreover,

32If θi = xi + ρi then clearly ρi < θi. In addition, ρi ∈ R̃i(xi + ρi − ρi) = R̃i(θi − ρi) hence θi, ρi ∈ Bi(θi) contradicting
that Bi is single-valued.

27



as shown in the proof of Theorem 1, the smallest (respectively, the largest) selection from an upper hemi-

continuous correspondence with range R is lower semi-continuous (respectively, upper semi-continuous). In

particular, the least selection is “lower semi-continuous from above” and the greatest selection is “upper

semi-continuous from below”. Combining we see that the correspondence R̃i(Q − ηi, t) − {ηi} satisfies all

of the conditions of Corollary 2 in Milgrom and Roberts [27]. This allows us to conclude that bi(Q, t) is

increasing in t.

To summarize, Q∗(t) is an equilibrium aggregate given t if and only if z(Q∗(t), t) = Q∗(t). In addition,
we have proved that z(Q, t) is continuous in Q and increasing in t. Finally, recalling the definitions of θ(a)
and θ(b) from above, we have that z : [θ(a), δ(b)]× T → R satisfies z(θ(a), t) ≥ θ(a) and z(δ(b), t) ≤ δ(b) for
all t. The conclusion of the Theorem now follows from the same argument we used at the end of the proof
of the previous lemma (alternatively, it also follows from the simpler version of this result that applies to
the continuous function z(Q, t)−Q, see e.g. Villas-Boas [44]).

7.3. Proof of Proposition 3

1. and 2. were verified in the main text, so only 3. and existence of an equilibrium remain to be addressed.
To prove existence, consider the payoff function of player i after the change of coordinates si 7→ zi = hi(si)

(for i ∈ I): π̃i(z) = Vizi

[
R+H(

∑I
j=1 zj)

]−1
− c̃i(zi). Since H is convex, it is straightforward to verify that

π̃i will be pseudo-concave in zi under condition (21) (in particular, this condition implies that c̃i = ci ◦ h−1i
will be convex). Existence of an equilibrium therefore follows from Theorem 5 (the often studied case where
payoff functions are not well defined at the origin was dealt with in footnote 27). Note that a coordinate
change as the one just considered does not affect any of our comparative statics results since the local
solvability is ordinal (Section 4.1.2). In particular, the (uniform) local solvability will hold in this new set
of coordinates if and only if it holds in the original coordinates. To prove 3. we use Theorem 8. Note that
that theorem’s condition for s∗i (t) to be locally increasing in a positive shock t is

−[DsiΨi(s
∗
i , g(s∗), t)]−1DQΨi(s

∗
i , g(s∗), t) ≥ 0. (24)

Since DsiΨi(s
∗
i , g(s∗), t) < 0 under condition (21), (24) holds if and only if DQΨi(s

∗
i , Q

∗, t) ≥ 0 where
Q∗ = g(s∗). For the same reason, the condition for s∗i (t) to be decreasing in t when t does not directly affect
player i (the second statement of 3.), is satisfied if and only if DQΨi(s

∗
i , Q

∗) < 0. Since DQΨi(s
∗
i , Q

∗, t)
equals:

Vi ·

[
− h′i (s∗i )

(R+Q∗)2
+

2H ′
(
H−1(Q∗)

)
h′i(s

∗
i )hi(s

∗
i )

(R+Q∗)
3 −

H ′′
(
H−1(Q∗)

)
(H−1)′(Q∗)h′i(s

∗
i )hi(s

∗
i )

(R+Q∗)
2

]
,

it is immediately seen that (24) will hold if and only if hi(s
∗
i ) ≥ η(Q∗) where η is the function defined in the

Theorem. By Theorem 8 the player will then increase her effort. The case where DQΨi(s
∗
i , Q

∗) < 0 and a
non-affected player decreases her strategy follows by the same reasoning. �
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