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1 Introduction

A game has strategic substitutes if an increase in one player’s strategy makes the best response
of other players decrease. This outcome frequently arises under imperfect competition (strategic
market games, Cournot competition, Bertrand competition, price leadership), it may reflect negative
externalities at the margin (polluting firms, congestion games, the problem of the commons), it may
arise if the individual agents in a team have an incentive to “free-ride” (teamwork games, public good
provision), or it may result in situations with competition between teams (arms race with alliances,
floor voting in political parties).1

Games with strategic substitutes are closely related to games with strategic complementarities
(Topkis (1979), Vives (1990), Milgrom and Roberts (1990)). Both are concepts based on order
theory; and a substantial advantage of both is that the strategic structure is detectable by use of
the monotonicity theorem of Topkis (1978). In games with strategic complementarities, it is a direct
consequence of Tarski’s fixed point theorem that a pure strategy Nash equilibrium (PSNE) exists.
The set of equilibria is a complete lattice (Zhou (1994)), and so is highly structured. This, under some
additional assumptions on payoff functions, leads to the existence of a Pareto best and Pareto worst
equilibrium (Milgrom and Roberts (1990)). Comparative statics of fixed points can be addressed with
strong and easily accessible methods (Milgrom and Roberts (1990), Villas-Boas (1997)). Finally, such
a question as the stability of a PSNE has found satisfactory and easily verifiable answers (Curtat
(1996), Vives (2000)).

In contrast to this wealth of results, surprisingly little is known about games with strategic
substitutes. In his textbook on imperfect competition, Vives summarizes the literature on existence of
PSNE (without quasi-concavity) as follows: “When best replies are decreasing, existence is guaranteed
for two-player games [...] but not in general. In the particular case of one-dimensional strategy sets
where the best reply of a player depends only on the aggregate actions of others existence can be shown
for any number of players.” (Vives (2000), p.43). The existence result referred to by Vives in the
case of one-dimensional strategy sets is the much celebrated result of Novshek (1985), subsequently
refined by Kukushkin (1994). By the “aggregate actions of other players” is meant the linear sum of
the strategies.

In a recent paper, Dubey et al. (2002) extend the Novshek-Kukushkin existence result on one-
dimensional strategy sets to allow best replies to depend on a function which is not necessarily a
linear sum. This extension is one example of what, following Corchón (1994) has come to be known
as an aggregative game: An aggregator is an order-preserving function of all agents’ strategies, and
the game is aggregative if each player’s payoff is a function of the aggregator and her own strategy.2

All of the games mentioned in the introductory paragraph are aggregative under rather innocent
assumptions (which to the best of knowledge include all cases studied in the applied literature).

It is the objective of this paper to redress the imbalance between games with strategic substitutes
and complementarities. We shall do so by:

(i) Proving that under a very general notion of aggregation, games with strategic substitutes pos-
sess a pure strategy Nash equilibrium regardless of the (dimension of) strategy sets. No symmetry

1In section 4, examples from each of these groups are considered in detail. The terms “strategic substitutes” and
“strategic complementarities” were coined by Bulow et al. (1985). Many examples of games of both types can be found
in Vives (2000).

2Corchón (1994) states that his terminology is inspired by Dubey et al. (1980) who in a market game define the
”Aggregation Axiom” to mean that the trading possibilities of an agent depends only upon the mean of the messages of
the game’s agents. For recent studies of aggregative games see Alos-Ferrer and Ania (2002), Possajennikov (2003) and
Schipper (2005). Kukushkin (1994) also states that his result extends to operations which are “essentially equivalent”
to addition. As will become clear, this is definitely correct if by “essentially equivalent” Kukushkin means a binary
relation under which strategy sets are Abelian groups.
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assumptions are imposed on agents or on the aggregator, so even in the one-dimensional case this
considerably generalizes the above mentioned results when strategy sets are connected.3 Moreover,
we make no assumptions (except for technical ones) on the order in which joint best-replies must be
decreasing, leaving us with the full flexibility of what Milgrom and Shannon (1994) call “selective
ordering”.

Using this existence result we are able in section 4 to claim originality when proving the existence
of a PSNE in extensions of two basic models of industrial organization: The Cournot model with
any number of goods and firms. And the Bertrand model with differentiated products when demand
exhibit gross complementarity and/or is not symmetric.

(ii) Characterizing the structure of the equilibrium set. As mentioned, the set of PSNE is a
lattice when there are strategic complementarities. As a consequence, players will often benefit from
coordination because the extremal PSNE in the lattice - in application typically the greatest PSNE
- is Pareto preferred by all agents (Milgrom and Roberts (1990)). In contrast, as we prove, the set of
PSNE in a game with strategic substitutes will typically, though not always, be completely unordered
(an antichain). From this follows that there typically is no coordination failure, so, speaking very
loosely, “if someone gains, someone else stands to loose”.4 This group of results have many interesting
implications, which are discussed further in the paper, and more concretely in the section with
applications.

The paper then turns to:
(iii) Comparative statics of fixed points. If best-replies are order-preserving in an exogenous

parameter, so will the extremal PSNEs be in a game with strategic complementarities (see e.g. Topkis
(1998)). In games with strategic substitutes, we prove that a PSNE cannot be order-reversing in the
exogenous parameter. Although this does provide testable implications, it is obviously not as sharp a
result as the one just mentioned concerning strategic complementarities. To get sharper results more
assumptions are necessarily. In symmetric equilibrium of (symmetric) games with one-dimensional
strategy sets we are thus able to derive a monotonicity theorem (theorem 5) which is as sharp as
any result on strategic complementarities. When the game is aggregative, Corchón (1994) in the
one-dimensional case with best-replies which are single-valued contractions, has proved a number of
comparative statics results all of which are as elegant in their formulation as any result on strategic
complementarities. We follow up on this theme and present some more general conditions which
ensure strong comparative statics conclusions.

(iv) Uniqueness and stability. Uniqueness and stability results for supermodular games have been
derived for supermodular games by Granot and Veinott (1985) and Curtat (1996). We shall take a
slightly different approach than these authors, but the results for the strategic substitutes case are
as strong as any which are available on strategic complementarities.

(v) Finally a new result providing conditions under which symmetric equilibria exist is presented.
Existence of symmetric PSNE in symmetric games with strategic substitutes is a more delicate ques-
tion than in games with strategic complementarities or for that matter, in quasi-concave games (in
both of these symmetric PSNE always exist in symmetric games). Nevertheless, by use of the main
existence theorem in this paper described under (i) above, a very general result on existence of sym-
metric PSNE in symmetric games can be proved. The merit of this result is in applications where
one would often like to study symmetric PSNE due to their simpler structure (an example being the

3The main limitation of this paper’s existence result is that it does not permit discrete strategy sets as does for
example Kukushkin (1994). The question about the limits of aggregation with arbitrary one-dimensional strategy sets
will be persued in a separate paper. Note that all aforementioned papers on existence of PSNE implicitly or explicitly
assume that aggregators are symmetric functions.

4Of course this ”constrained optimality result”, is not to be confused with a first welfare theorem. Each PSNE is
Pareto optimal within the set of PSNE, not within the set of feasible allocations.
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comparative statics result just mentioned).

A separate section (section 4) is concerned with examples and applications of our results. Among
other, that section considers multimarket Cournot competition, teamwork games, and a game with
competition between teams.

There are many questions which this paper can be seen as raising but not answering: Evolutionary
stability (Alos-Ferrer and Ania (2002), Possajennikov (2003), Schipper (2005)), games with strategic
substitutes’ relationship with potential games (as raised by Dubey et al. (2002) and at least implicitly
by Monderer and Shapley (1994), cf. that paper’s introduction), the presence or absence of best-
reply cycles (Dubey et al. (2002), Kukushkin (2004)), learning (which would be motivated by the
strategic complementarities case, cf. Milgrom and Roberts (1990)), the “competitive limit” (which
could be addressed in general aggregative games paralleling existing results on the Cournot model ,
cf. Novshek (1980)), as well as the role of mixed equilibria (which as exemplified by Acemoglu and
Ozdaglar (2006) may lead to some very interesting observations).

2 General Definitions and Existence

As mentioned in the introduction, aggregative games is an active research area in its own right (see for
example Alos-Ferrer and Ania (2002) and Schipper (2005)). The existence proofs in Novshek (1985),
Kukushkin (1994), and Dubey et al. (2002), all fall safely within the standard notion of aggregative
games. After defining games with strategic substitutes (and it is clear how this should be done), we
turn in this section to define a general notion of aggregation which applies to multidimensional and
asymmetric games. Since all of the mentioned studies concern the one-dimensional case, it is not
equally clear how this should be done. Ultimately, the following definition is guided by mathematical
necessecity in that it paves the way for the existence result of the third subsection. Having said this,
the chosen formulation is actually not the most general possible but represents a suitable compromise
between simplicity and generality. The more general case is discussed briefly at the end of the section.
Accepting the aggregative game framework, by far the most restrictive assumption we shall make
concerns the strategy sets. Essentially these must be “cubes” in RN , in particular they must be
(compact, convex) intervals in the one-dimensional case.5

2.1 Games With Strategic Substitutes

Let I = {1, . . . , I} be a finite set of players. Each player has (pure) strategy set Si ⊆ RN , where N is
finite.6 A typical element of Si (a strategy) is denoted si. The joint strategy set is S =

∏
i∈I Si and a

joint strategy is an element s = (s1, . . . , sI) ∈ S. We also define S−i =
∏

j 6=i Sj , with typical element
s−i. Each strategy set Si comes with a partial order ≥i, and the joint strategy set S is endowed with
the product order so s ≥ s′ ⇔ si ≥i s′i for all i. The orders ≥i are assumed throughout the paper to
be closed, i.e., each order’s graph {(si, s

′
i) ∈ Si × Si : si ≥i s′i} is assumed to be a closed subset of

Si × Si.7

5This is the structure of strategy sets in smooth submodular games which one would define analogously to Milgrom
and Roberts (1990) (cf. Theorem 4) by replacing “increasing differences” with “decreasing differences”. Needless to say,
this class is by far the most important from an applied perspective because it is under such conditions that one can
establish supermodularity and decreasing differences by looking at the second order derivatives of the payoff functions.

6We could have taken strategy sets to be subsets of arbitrary finite dimensional topological vector spaces without
changing any of the results. In particular the assumption that the dimension of the strategy sets is the same is of no
importance.

7All topological statements refer to the usual topology. Subsets are equipped with the induced topology and products
with the product topology. That ≥i is closed is the same as saying that s ≥i s′ must hold whenever sj ≥i s′j all j for
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Denoting the payoff function of player i by π̃i : S → R, the joint strategy s∗ ∈ S is a pure strategy
Nash equilibrium (PSNE) if π̃i(s∗i , s

∗
−i) ≥ π̃i(si, s

∗
−i) for all si ∈ Si and all i ∈ I. Equivalently, a

PSNE is a fixed point s∗ ∈ R(s∗) of the joint best-reply correspondence:

(1) R(s̄) = arg max
s∈S

∑
i∈I

π̃i(si, s̄−i)

Observe that R = (Ri)i∈I , where Ri(s̄−i) = arg maxsi∈Si π̃i(si, s̄−i) are the (individual) best-reply
correspondences. A selection from R is a function r : S → S, with r(s) ∈ R(s) all s ∈ S. The
selection is order-reversing if s ≥S s̃ ⇒ r(s) ≤S r(s̃) for all s, s̃ ∈ S. It should be clear that R has
an order-reversing selection if and only if every Ri has an order-reversing selection ri : S−i → Si. A
(non-cooperative pure strategy) game with strategic substitutes is defined as follows.

Definition 1 The game Γ̃ = {I, (Si, π̃i)i∈I ,≥S} is a game with strategic substitutes if each strategy
set Si is compact, every π̃i is upper semi-continuous, and the joint best-reply correspondence R has
an order-reversing selection.

Any submodular and, more generally, any quasi-submodular game, certainly has best-replies
which admit order-reversing selections. Indeed, in such games the greatest selection r(s) = supR(s),
and the least selection r(s) = inf R(s), will both exist and be order-reversing. An example of a
game which has an order-reversing selection but may fail to have order-reversing extremal selections
is a weakly quasi-submodular game.8 In the next section we shall define (quasi-)submodular games
explicitly.

Even in the one-dimensional case (Si ⊂ R) a game with strategic substitutes need not have a PSNE
unless further assumptions are imposed. The following example is due to Nikolai Kukushkin.9 Note
that every selection from the each best-reply correspondence is order-reversing (so the game has strict
strategic substitutes, cf. section 3).

Example 1 Let S1 = S2 = S3 = [0, 1] and take:

R1(s2, s3) =


{1} if s2 < 0.5
{0, 1} if s2 = 0.5
{0} if s2 > 0.5

R2(s1, s3) =


{1} if s3 < 0.5
{0, 1} if s3 = 0.5
{0} if s3 > 0.5

R3(s1, s2) =


{1} if s1 < 0.5
{0, 1} if s1 = 0.5
{0} if s1 > 0.5

No equilibrium exists: If s1 = 1 then s2 ≤ 0.5, so s2 = 0, but then s3 = 1 and so s1 = 0 (likewise
if s1 = 0).

convergent sequences sj → s and s′j → s′.
8With the obvious adaption from Shannon (1995), say that f satisfies the weak dual single-crossing in (x, t): if for

all x′ ≥ x, f(x′, t) < f(x, t) ⇒ f(x′, t′) ≤ f(x, t′) for all t′ > t. Given s−i ∈ S−i, the payoff function π̃i is weakly
quasi-supermodular in si (Shannon (1995)) if for all x, y ∈ Si: π̃i(x, s−i) > π̃i(x ∧ y, s−i) ⇒ π̃i(x ∨ y, s−i) ≥ π̃i(y, s−i).
The game Γ is weakly quasi-submodular if for each i ∈ I, Si is a complete lattice, and either (1) For all i ∈ I, π̃i is
quasi-supermodular in si (for fixed s−i), and satisfies the weak dual single crossing property in (si; s−i), or (2) For all
i ∈ I, π̃i is weakly quasi-supermodular in si (for fixed s−i), and satisfies the dual single crossing property in (si; s−i).

9Personal communication.
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2.2 Aggregative Games

To resolve the existence question pointed out at the end of the previous subsection (as well as several
other questions, see the next section) we shall restrict attention to aggregative games. To simplify the
exposition, we shall assume from now on that strategy sets are product sets, i.e., Si = S1

i ×. . .×SN
i ⊆

RN , where Sn
i ⊆ R. As a consequence we have si = (s1

i , . . . , s
N
i ) and each coordinate is free to vary

independently of the other coordinates. Clearly this is restrictive; and at the end of this section we
explain why this assumption is, in fact, substantially stronger than what is necessary (but as will
become clear, relaxing it leads to some delicate topological considerations).10

The basic idea of aggregative games is that every player’s payoff function must be a function
of her own choice of strategy si ∈ Si and some aggregate Q ∈ RM . The aggregate depends on the
joint strategy through a function g : S → RM , Q = g(s1, . . . , sI) called the aggregator. Letting
X = {g(s) : s ∈ S} ⊆ RM (the direct image of g), we can define this formally as follows:

Definition 2 The game Γ = (I, (Si, π̃i)i∈I ,≥S) is said to admit the aggregator g, where g : S →
X ⊆ RM , if there exist functions πi : Si × X → R, i ∈ I, such that π̃i(s) = πi(si, g(s)), all s ∈ S,
i ∈ I.

Every game admits some aggregator (namely the identity function g(s) = s). So clearly, a
suitable definition of aggregative games cannot rest on this feature alone. Writing g = (g1, . . . , gM ),
the first thing we shall require is that gm : (Sj

1 × . . . × Sj
I )j∈M(m) → R where M(m) ⊆ {1, . . . , N},

M(1)∪ . . .∪M(M) = {1, . . . , N}, and M(m1)∩M(m2) = ∅ for all m1 6= m2. What this says is that
no two coordinate functions gm1 and gm2 may depend on the same coordinates from the strategy
sets. This implies, in particular, that M ≤ N so if each Si ⊆ R, then M = N = 1, and g : S → R.
On the other hand, M may well be strictly smaller than N (intuitively, g may “aggregate across
coordinates”). The obvious example is g(s) =

∑
i

∑
n sn

i , Si ⊂ RN , where then g : S → R+, so M = 1
and M(1) = {1, . . . , N}.

The next requirement is more complicated. When player i observes the aggregate Q ∈ X in
response to some reference strategy θi ∈ Si, we assume that she is able to correctly anticipate the
new aggregate Q which results if she chooses a different strategy si ∈ Si, while the other players’
strategies s̄−i ∈ S−i, remain fixed. Formally, this will be the case if (and only if) there exists a
function Fi : X−i × Si → X, where X−i = {g(s̄−i, θi) : s−i ∈ S−i} ⊂ X, such that:

(2) g(s̄−i, si) = Fi(g(s̄−i, θi), si), for all si ∈ Si (and s̄−i ∈ S−i fixed)

We may also write (2) in terms of g’s coordinates:

(3) gm(s̄M(m)
−i , s

M(m)
i ) = Fm

i (gm(s̄M(m)
−i , θ

M(m)
i ), sM(m)

i ) ,m = 1, . . . ,M

where then s
M(m)
i ∈ S

M(m)
i (and s̄

M(m)
−i ∈ S

M(m)
−i fixed). Note that Fm

i : Xm
−i×S

M(m)
i → Xm where

Xm
−i = {gm(s̄M(m)

−i , θ
M(m)
i ) : s

M(m)
−i ∈ S

M(m)
−i } ⊂ Xm = {gm(sM(m)) : sM(m) ∈ SM(m)} ⊆ R.

In the next statement and throughout, X ⊆ RM is equipped with the usual order ≥ (so the or-
der on X does not necessarily stand in any specific relationship with ≥S , see example 4 below).
When two elements are comparable x ≥ y but not identical, x 6= y, we write x > y. The aggregator
g is strictly order-preserving if s >S s′ ⇒ g(s) > g(s′).

Definition 3 The game Γ = (I, (Si, π̃i)i∈I ,≥S) is aggregative if it admits and aggregator g : S →
X which is continuous, strictly order-preserving, and satisfies the two previous requirements (the
coordinate-condition immeditately after definition 3, and condition (2) for all i ∈ I).

10We could have taken Si to be a finite product of chains without changing anything.
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By (2), π̃i(si, s̄−i) = πi(si, g(s̄−i, si)) = πi(si, Fi(g(s̄−i, θi), si)) in an aggregative game. It follows that
each player’s best replies will be a function of g(s̄−i, θi) ∈ X−i. Intuitively g(s−i, θi) is the “market
signal” the agent observes upon sending her reference strategy θi to the market (and it is clear that
she needs no more information to make a decision because by (2) she can compute the aggregate g(s)
for any other strategy si ∈ Si). We shall often write Ri(g(s̄−i, θi)) for the individual best-replies of
player i ∈ I to stress this.

Example 2 (Separable functions are aggregators) If G(g(s)) =
∑

i Gi(si), where Gi = (G1
i , . . . ,

GM
i ), i ∈ I, Gm

i : Sm
i → R, are order-preserving functions, and G is continuous with a continu-

ous and order-preserving inverse, then g and Fi(x, si) = G−1(x + Gi(si)) satisfy (2) for all i and
hi(Q, si) = G(Q)−Gi(si) which clearly is order-preserving in Q and order-reversing in si. Separable
aggregators are important of the simple reason that these are the ones most often encountered in
applications (see section 4). Not every aggregator is separable, however, as the next example shows.

Example 3 (Building Aggregators Recursively) Let Fi : X−i × Si → X, i = 1, . . . , I be a
sequence of functions which are (i) continuous and strictly order-preserving, (ii) continuous, (iii)
admit θi ∈ Si such that Fi(x, θi) = x for all x ∈ X−i. Then g(s1, . . . , sI) = F1(F2((· · ·FI(g(θ1, . . . ,
θI), sI), · · · ), s2), s1) is a regular aggregator. Conversely, if g is a regular aggregator each Fi must
satisfy (i)-(iv) (see lemma ?? and surrounding discussion in the proof of the main theorem). As
may be checked, the ordering in this recursive construction does not matter, so we could instead
have taken, say, FI(FI−1((· · ·F1(g(θ1, . . . , θI), s1), · · · ), sI−1), sI) and this would produce the same
aggregator g. As a specific example which is not separable, let Fi = F and Si = S a compact subset
of R+ for all i and X ⊆ R. Take F (s1, s2) = s1 + s2 + s1s2 which for I = 3 yields g(s1, s2, s3) =
s1 + s2 + s3 + s1s2 + s1s3 + s2s3 + s1s2s3 (Dubey et al. (2002)). Here θi = 0 and h = hi (the inverse)
is given by h(Q, si) = Q−si

1+si
. We shall apply this aggregator, and its multidimensional extension in

the teamwork game of section 4.

The next example shows that in applications one enjoys the full flexibility of what
Milgrom and Shannon (1994) call selective ordering. As will be explored in details in the context
of games with competition between teams in section 4, strategic substitutes may - as may strategic
complementarities - be “hidden” in the sense that it applies only if one, or both, of the orders ≥S

and ≥ are not chosen as the usual ones.11

Example 4 Let I = 3, Si ⊆ X ⊆ RN and take g(s) = α1s1−α2s2 +α3s3, where the α’s are positive
constants. Here F1(x, s1) = x + α1s1, F2(x, s2) = x− α2s2, and F3(x, s3) = x + α3s3 clearly satisfy
(2). However, g is not order-preserving if ≥S is the usual order. But, defining ≥S by virtue of ”s ≥S s̃
⇔ s1 ≥ s̃1, s2 ≤ s̃2, s3 ≥ s̃3”, where ≥ is the usual order on RN , g will be order-preserving, and
since it is separable it is therefore an aggregator.

2.3 Existence of PSNE

Armed with a proper understanding of aggregative games, we are now ready to state the main result
of this paper. Just as Novshek (1985) and Kukushkin (1994), the proof focuses on the backward
reply correspondence. In the present set-up this is defined as B = (Bi)i∈I where Bi : X → 2Si ∪ ∅,
i ∈ I, are the individual backward reply correspondences:

(4) Bi(Q) = {si ∈ Si : si ∈ Ri(hi(Q, si))}
11For a number of results and examples on the use of non-Euclidean orders see Jensen (2004).
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We have B : X → 2S ∪ ∅ under the convention that B(Q) = ∅ whenever Bi(Q) = ∅ for some
i ∈ I. Except for the added generality in terms of strategy sets and aggregators, (4) is the direct
parallel to the backward reply correspondence first explored by Selten (1970). In particular, s∗ ∈ S
will be a PSNE if and only if there exists Q ∈ X such that g(s∗) = Q and s∗ ∈ B(Q).

Theorem 1 (Existence of PSNE) Let Γ be an aggregative game with strategic substitutes. Then
there exists a pure strategy Nash equilibrium under the following conditions:

(i) Each strategy set is a product set Si =
∏N

n=1 Sn
i ⊆ RN , where Sn

i is a connected subset of R.
(ii) There exists Q∗ ∈ X, B(Q∗) 6= ∅, such that g(s) ≤ Q∗ for all s ∈ S.

Remark 2.1 If ≥S is the usual order so that S is a complete lattice with greatest element >S; then
(ii) is satisfied provided that B(g(>S)) 6= ∅.

Condition (i) is clearly restrictive, effectively ruling out discrete strategy sets. If N = 1 (so strat-
egy sets are subsets of the reals), it implies that Si is a closed interval. (ii) places an upper bound on
the realizations of the aggregator: If s is a feasible joint strategy, its realization under the aggregator
must be below Q∗. For example, imagine that g(s) =

∑
i si and that every Si has a greatest element

>i. Taking Q∗ =
∑

i>i and assuming that {0} = Ri(
∑

j 6=i>j) for all i, (iii) will be satisfied because
0 ∈ B(Q∗) while clearly g(s) ≤ Q∗ for all s ∈ S.12

The fact that theorem 1 is the first to answer such a question as when a pure strategy equilib-
rium exists in multimarket oligopolistic models without quasi-concavity, is perhaps indicative of its
proof’s complexity. Because of this, an attempt will now be made at explaining it in some detail.

The proof begins by an application of Zorn’s lemma in order to find a selection f from B defined
upon a maximal subset of X, call it P ∗, which is an up-set with greatest element Q∗ of (ii) above.13

Being an upset means that if x ∈ P ∗ and y ≥ x, y ∈ X, then y ∈ P ∗. As it turns out, P ∗ becomes
topologically very well-behaved (an absolute retract, in fact). In particular, it is contractible and
contains its “lower boundary” ∂P ∗ defined as the set of minimal elements in P ∗. ∂P ∗ will always be
a set of dimension less than or equal to M − 1, M being the dimension of g(S) (the direct image of
g). When g(S) is one-dimensional as is the case in Novshek and Kukushkin’s proofs; ∂P ∗ consists of
a single point (the infimum of P ∗).14 This point corresponds exactly to Novshek’s termination point,
a point which Kukushkin denotes by t0 (Kukushkin (1994), p.24). Unfortunately, ∂P ∗ will generally
not have an infimum when the dimension is greater than one, and more importantly, it is not so that
every element in ∂P ∗ is a fixed point of the backward reply correspondence. Thus from this point
and on, there ceases to be any connection with the proofs of Novshek and Kukushkin.

Any Q ∈ P ∗ determines a joint backward reply f(Q) ∈ B(Q) by the selection f mentioned
above. Defining F (Q) = Q−g(f(Q)), a PSNE consequently exists provided that F (Q∗) = 0 for some
Q∗ ∈ P ∗ (in the following discussion we are taking X ⊆ RM with the usual order). By the way the
set P ∗ is defined, it will always hold that F (Q) ≥ 0. Our first important observation concerning F
is that it can never hold that F (Q) � 0 (lemma 11) when Q ∈ ∂P ∗. Thus F : ∂P ∗ → ∂RM

+ . The

12One might conjecture that it would always be possible to suitably “extend” strategy sets such that the previous
description applies. In most applications this is probably so, but it is not true as a general statement as returned to
below.

13This step is similar to the argument used by Smithson (1971) to prove the existence of fixed points of order-
preserving multifunctions. Lemma 6 can be seen as the verification of our equivalent to Smithson’s “Condition III”. By
a similar argument one can show that Smithson’s Condition III will be satisfied provided that the correspondence is
upper hemi-continuous (while both conditions I and II are in fact satisfied if the correspondence is increasing in the
strong set order).

14If payoff functions are additively separable, this will be the case more generally and then the proof is essentially
over. In general, P ∗ does not have an infimum unless X is one-dimensional or payoffs are additive.

7



second important observation is that in ∂P ∗ are points which map to every axis of RM
+ (so there is

one point with F 1(Q) = 0, one with F 2(Q) = 0, and so forth). If for example M = 3, there are three
such points (one for each axis). There exists a continuous map t : SM−2 → ∂P ∗ which crosses each
of these points once. So if M = 3, SM−2 = S1 (the unit circle), so t is a loop in ∂P ∗.15 Because all
homotopy groups of ∂P ∗ are trivial (it is contractible), the map t will be null-homotopic, i.e., the
map t will be homotopic with a constant map. In the three-dimensional loop-case mentioned, this
intuitively means that the loop can be continuously deformed to a point.

The final piece of information we need about F is that this will be continuous in a certain topology,
which is essentially the so-called Scott-topology, cf. Gierz et al. (2003), chapter 2 (the qualifier is
because we need to be carefull in its definition at the boundary ∂P ∗). This topology is not a Hausdorff
topology (so a convergent sequence may have multiple limits); and it certainly does not rule out the
possibility of “jumps”. It does, however, rule out a certain kind of jumps; and precisely those which
would be necessary for the composition F ◦ t : SM−2 → RN

+ to avoid passing 0 when it is deformed to
a point. Leaving the technicalities, note that it is easy to see that a loop in R3

+ with the properties
described above could never be continuously deformed to a point without passing the origin if the
topology is the usual one. This basic intuition carries over to the non-Hausdorff framework; and so
we end up concluding that there must exist Q ∈ X with F (Q) = 0 which is to say that there exists
a pure strategy Nash equilibrium.

We end this section we an example which shows that the part of assumption (ii) which says that
B(Q∗) 6= ∅ is critical. Indeed, if one does not make sure that the backward reply correspondence is
well-defined at least at one point Q ∈ X; non-existence of a PSNE is inevitable. This example is
motivated by discussions with Nikolai Kukushkin.16

Example 5 Let S1 = [0, 1]×{0}×{0}, S2 = {0}× [0, 1]×{0}, and S3 = {0}×{0}× [0, 1] and g(s) =
s1 + s2 + s3 (which is a regular aggregator). Letting s1 = (t1, 0, 0) ∈ T1, s2 = (0, t2, 0), s3 = (0, 0, t3),
note that g(s) = (t1, t2, t3). The game is aggregative provided that: π̃i(si, s−i) = πi(si, g(s)) =
πi((t1, 0, 0), (t1, 0, 0), (0, t2, 0), (0, 0, t3)) = fi(t1, t2, t3). But then the game is automatically aggregative
and, furthermore, (s∗1, s

∗
2, s

∗
3) is a PSNE if and only if (t∗1, t

∗
2, t

∗
3) is a PSNE in the one-dimensional

game with payoffs fi and strategies ti ∈ Ti = [0, 1]. Clearly, a PSNE does not necessarily exist
because the “one-dimensional reduction” is not required to be aggregative (see example 1). What
happens here is that (iii) is being violated because B(Q) = ∅ for all Q ∈ g(S) = [0, 1]. One can check
this point-by-point in any concrete case; but it is seen generally by the following: For s ∈ B(Q),
si ∈ Ri(Q− si) for all i where Q− si ∈ X−i (here X−1 = [(0, 0, 0), (0, 1, 1)], X−2 = [(0, 0, 0), (1, 0, 1)],
and X−3 = [(0, 0, 0), (1, 1, 0)]). But Q− si ∈ X−i for i = 1, 2, 3 if and only if Q = (s1

1, s
2
2, s

3
3). Thus

s ∈ B(Q) if and only if (i) Q = (s1
1, s

2
2, s

3
3) and (ii) Qi ∈ Ri

i((0
i, Q−i)). But this exactly brings us to

the “one-dimensional reduction”; and so there exists a joint best-reply if and only if the reduction has
a PSNE.

15The case M = 2 is a little special. Here we have t : [0, 1] → ∂P ∗ with the end-points corresponding to the two
points just mentioned. Of course this is the same as saying that those points can be connected with a continuous path.

16Novshek (1985) solves the “boundary problem” in the spirit of general equilibrium theory by assuming defining
best-replies on the whole of R+ and imposing an upper bound such that all firms will choose zero output if the sum of
the other players’ outputs is at or above this bound. Kukushkin’s extension argument at the beginning of the proof of
Proposition 1 (Kukushkin (1994), p.24) makes it possible to dispense with any such uniform upper bound if in stead
strategy sets are assumed to be compact. The relationship with the multidimensional case is subtle: If one is able to
extend strategy sets and best-replies in the manner described after theorem 1, (ii) is indeed implied. Here one uses
the fact that a correspondence R : S → 2S has a fixed point if and only if any correspondence R̃ : T → 2S , S ⊆ T ,
R̃|S = R, has a fixed point. But one may not “extend” so as to redefine the best-reply map (specifically, in the example,
one would have to allow best-replies to be a funcion of the firms’ own strategies in order to make the backward reply
correspondence non-empty at Q∗ = (1, 1, 1)).
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3 Properties of Equilibria

Having at this point established that if a game with strategic substitutes is aggregative it has a
pure strategy Nash equilibrium (PSNE), we are ready to explore the resulting family of games’
properties. With a keen eye on applications, this section characterizes the set of PSNE from various
perspectives, including the structure of the equilibrium set, comparative statics, uniqueness, and
stability. In addition, several results concerning symmetric games will be presented. As usual a game
is symmetric if players share the same strategy set and payoff function (the latter being up to a
monotone transformation). Additionally, as in Milgrom and Roberts (1990), it is required that the
order ≥S has the form ≥Si × . . .× ≥Si where ≥Si is an order on the strategy set. In an aggregative
game, symmetry of payoff functions obviously implies that the aggregator g is a symmetric function.

While some of the following results apply to general games with strategic substitutes, some of
them hold only if the game is aggregative, and in some cases submodular.17 In submodular games,
the joint strategy set S is assumed to be a lattice, i.e., s1 ∧ s2, s1 ∨ s2 ∈ S, for all s1, s2 ∈ S.
Here s1 ∧ s2 is the infimum and s2 ∨ s2 the supremum of s1 and s2. Moreover, the joint objective
function π̃(s, s̄) =

∑
i∈I πi(si, g(s̄−i, si)) is assumed to be supermodular in s ∈ S and have decreasing

differences in (s, s̄) ∈ S × S. Under the additional requirements that S is compact and π̃ is upper
semi-continuous (both of which feature as part of our general definition of a game with strategic
substitutes, definition 1), it follows that the joint best-reply map R will be non-empty lattice valued,
have a closed graph, and be descending, i.e., s1 ≥ s2, s̄1 ∈ R(s1), s̄2 ∈ R(s2) implies s̄1 ∧ s̄2 ∈ R(s1)
and s̄1 ∨ s̄2 ∈ R(s2). This in turn implies that the greatest and least selections are order-reversing.
We remark that this also holds if the game is quasi-submodular, but to keep things simple attention
will be restricted mainly to submodular games in what follows.

3.1 The structure of the equilibrium set

In a game with strategic complementarities the set of PSNE (the equilibrium set) will be a complete
lattice (Zhou (1994)). From this follows readily that if payoffs satisfy a certain, usually very reason-
able, monotonicity requirement then the greatest fixed point Pareto dominates any other fixed point,
while the least fixed is Pareto dominated by any other fixed point (Milgrom and Roberts (1990)).
As we now argue, such results generally do not hold in games with strategic substitutes for here the
tendency is rather for the set of equilibria to be completely unordered (an antichain).

Consider first the special case where R is strongly order-reversing, i.e., where s1 ≤S s1 implies that
s̄1 ≥S s̄2 for all s̄1 ∈ R(s1) and s̄2 ∈ R(s2). When payoffs are strictly quasi-concave in own strategies,
and more generally whenever best-replies are singletons, the singleton joint best-reply correspondence
is of course strongly order-reversing. This includes the model studied by Corchón (1994). If one
assumes that every player acts according to some “selection criteria” and that the persued selection
is order-reversing (e.g., he may always choose the greatest best-reply in a submodular game); it is
clear that the following result also applies.18

Theorem 2 Let R : S → 2S be a strongly order-reversing correspondence. Then there cannot exist
two (different) fixed points which are ordered by ≥S.

Proof: Pick s1 <S s2 such that s1 ∈ R(s1), and s2 ∈ R(s2). But by the hypothesis then, s2 ≤S s1,
which is a contradiction. 2

17Note that in this paper a game has strategic substitutes if its joint best-reply correspondence has an order-reversing
selection. This is a strictly weaker requirement than that the game be (quasi)-submodular.

18An example of such a “selection criteria” is Karp et al. (2003) who when discussing pure strategy Nash equilibria in
a game where agents face a choice between going to a bar or staying home: “assume that an individual who is indifferent
between the two actions stays home” (p.3).
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Theorem 2 says that if the joint best-reply correspondence is strongly order-reversing, the set of
Nash equilibria is an antichain. Yet another way of stating this is in the language of general equi-
librium theory: Say that a PSNE, s1, is constrained efficient if there does not exist another PSNE,
s2, such that s2 >S s1. Theorem 2 then says that any Nash equilibrium is constrained efficient.
Obviously, one cannot possibly hope to find reasonable conditions under which equilibria are Pareto
ranked in such a situation. Unfortunately, one should be carefull when appealing to strong order-
reversion of R (the joint best-reply correspondence). If R is strongly order-reversing so is every Ri;
but the converse of this statement is false. It follows that a game with strict strategic substitutes
(every Ri is strongly order-reversing) is not covered by theorem 2.

Example 6 Let there be two players, the first having a singleton strategy set S1 = {s1} and the
second a strategy set consisting of an ordered pair of elements, S2 = {s1

2, s
2
2}. Assume that agent 2’s

payoff function is constant so that R2(s1) = {s1
2, s

2
2}. Of course the first player has no actual choice,

R1(s1
2) = R1(s2

2) = {s1}, but the first player’s choice may still affect the payoff, say, π̃2(s1, s
1
2) <

π̃2(s1, s
2
2). Clearly both best-reply correspondences are strongly order-reversing. There are two fixed

points, (s1, s
1
2) <S (s1, s

2
2). Finally, there is a coordination problem in the sense that (s1, s

2
2) Pareto

dominates (s1, s
1
2). R has a strictly increasing selection, R(s1, s

1
2) = (s1

2, s1) going to R(s1, s
2
2) =

(s2
2, s1); so R is not strongly order-reversing.

As mentioned above, one may go on to assume that every agent’s choice is guided by some
selection rule, i.e., that every agent is described by an order-reversing best-reply selection ri from her
best-reply correspondence Ri. In this case, the set of equilibria will be an antichain (and non-empty
if the selection is continuous from below, as is the greatest selection of a submodular game). Still,
this is not always a satisfactory modelling device, and we shall therefore persue the question further.
Restricting attention to submodular games we are able to see clearly how any ordered fixed points
may potentially arise. Of course we are also able to use the following result to rule out such ordered
equilibria.

Theorem 3 Let Γ be a submodular game and let s2 >S s1 be two ordered PSNE. Then for every agent
i, the payoff function must be additive on [s1, s2], i.e., π̃i(si; s−i) = ui(si) + vi(s−i) for s ∈ [s1, s2]
where ui and vi are real-valued functions.

Proof: Take s1 ∈ R(s1) and s2 ∈ R(s2) with s2 >S s1. It must necessarily be the case that {s1, s2} ⊆
R(s1) and {s1, s2} ⊆ R(s2). In terms of the payoffs, for every i: π̃i(s2

i ; s
1
−i) = π̃i(s1

i ; s
1
−i) ≥ π̃i(ti; s1

−i),
ti ∈ Si. Likewise, π̃i(s2

i ; s
2
−i) = π̃i(s1

i ; s
2
−i) ≥ π̃i(ti; s2

−i), all ti ∈ Si. Since every π̃i has decreasing dif-
ferences in (si, s−i), π̃i(s2

i , s−i)−π̃i(s1
i , s−i) is non-increasing in s−i and so π̃i(s2

i , t) = π̃i(s1
i , t) ≡ vi(t)

for all t ∈ S−i with s1
−i ≤S t ≤S s2

−i. Next note that π̃i(s2
i ; s

2
−i)− π̃i(ti; s2

−i) = π̃i(s1
i ; s

2
−i)− π̃i(ti; s2

−i)
hence by decreasing differences, this difference is constant in s2

−i whenever s1
i ≤ ti ≤ s2

i , i.e,
π̃i(s2

i ; t−i) − π̃i(ti; t−i) = π̃i(s1
i ; t−i) − π̃i(ti; t−i) ≡ −ui(ti) for all t−i ∈ S−i. It now follows that:

π̃i(ti; t−i) = π̃i(s1
i ; t−i) + ui(ti) = vi(t−i) + ui(ti). 2

Recall that π̃i(si, s−i) has strictly decreasing differences in (si, s−i) if π̃i(s′i, s−i)− π̃i(si, s−i) is strictly
decreasing in s−i whenever s′i > si. On the other hand, π̃i(s′i, s−i)− π̃i(si, s−i) = ui(s′i)− ui(si) with
the additive form of theorem 3 and so it follows:

Corollary: Assume that Γ is a strictly submodular game (every payoff function has strictly de-
creasing differences in (si, s−i)). Then there cannot be two equilibria s∗,1 and s∗,2 with s∗,2i > s∗,1i

and s∗,2j > s∗,1j for j 6= i, i.e., the equilibria must be identical except for the entries of at most one
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player.

It should be mentioned that the previous results do not require the game to be aggregative. Econom-
ically, theorem 2 expresses that coordination failures are absent: Even if the players were allowed to
meet and choose a PSNE among the entire set of PSNE, they would generally not be able to agree
unambiguously on a preferred equilibrium. This sharply contrasts with supermodular games where,
under the monotonicity conditions mentioned above, the coordination failure is severe in the sense
that whenever there are multiple equilibria and agents’ payoff functions are able to rank ordered
strategies, the greatest PSNE will be preferred by every agent. In the case of theorem 3, the state-
ment is weaker. Here the player, say the i’th, whose entries differ in any ordered pair of equilibria
will necessarily be indifferent between the two, so no strict Pareto improvement is ever possible.
However, if all payoff functions are decreasing (or increasing) in the other player’s strategies; the
resulting equilibria will be Pareto ranked and in this case there is definitely a failure of coordination.
Turning this around, if some players’ payoff functions are increasing and others’ decreasing in player
i’s strategy; once again ordered fixed points cannot be Pareto ranked.

3.2 Comparative Statics

In models with strategic substitutes, comparative statics of fixed points is much more challenging
mathematically than in games with strategic complementarities (for the latter see e.g. Vives (2000)).
The situation we shall investigate here is when an exogenous parameter t ∈ T , where (T,≥T ) be
a poset (the parameter space), affects the joint best-reply map so that we have R : S × T → 2S .
Letting Fix(t) = {s ∈ S : s ∈ R(s, t)}, the question is whether the correspondence Fix : T → 2S has
”nice” monotonicity properties (e.g., all selections could be order-preserving). The first result, which
is very general, is related to theorem 3 in Villas-Boas (1997).19 If t2 >T t1 implies that s̄2 ≥S s̄1 for
all s̄1 ∈ R(s, t1) and s̄2 ∈ R(s, t2) (for every fixed s ∈ S), we say that R is strongly order-preserving
in t. In a parameterized family of submodular games, this outcome is ensured if each of the payoff
functions, π̃i(si, s−i, t), t ∈ T , has strictly increasing differences in (si, t) ∈ Si × T .

Theorem 4 (Comparative statics is not counterintuitive) Assume that R is strongly order-
preserving in t and that for all s ∈ R(s1, t) and any s2 ≥S s1 there exists y ∈ R(s2, t) with y ≤S s.
Pick t1, t2 ∈ T with t2 >T t1 and s1 ∈ Fix(t1), s2 ∈ Fix(t2). Then it cannot happen that s1 >S s2.

Proof: Assume to the contrary, that is pick s1 ∈ R(s1, t1), s2 ∈ R(s2, t2), s1 >S s2. Then
z ≥S s1 >S s2 ≥S y for all z ∈ R(s1, t2) and some y ∈ R(s1, t2), which is a contradiction. 2

Remark As is seen from the proof, the assumptions on R may be replaced by: R is strongly order-
reversing in s; and for all s ∈ R(s1, t1) and any t2 ≥T t1 there exists y ∈ R(s1, t2) with y ≥S s.

Theorem 4 transfers to submodular games as follows:20

Corollary (Comparative Statics in Submodular Games) Let Γ be a submodular game with
parameterized payoff functions π̃i(si, s−i, t), t ∈ T , which have strictly increasing differences in
(si, t) ∈ Si × T . Then the conclusion of theorem 4 is valid, i.e., when t2 ≥T t1 it cannot happen
that s1 >S s2 for s1 ∈ Fix(t1), s2 ∈ Fix(t2).

19Villas-Boas’ result concerns the case where best-replies are single-valued.
20These results, of course, remain valid when substituting quasi-submodular for submodular and dual single crossing

property for decreasing differences.
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Proof: By submodularity, there exists an order-reversing least section, r : S → S, r(s, t) ∈ R(s, t)
for any fixed t ∈ T . Taking s1 ≤S s2 and s ∈ R(s1, t), then y := r(s2) ≤S r(s1) ≤S s, which shows
that the second hypothesis of the theorem is satisfied. The first (R strongly order-preserving in t)
follows from the discussion prior to the theorem. 2

The corollary’s conclusion may be compared to the situation in supermodular games.21 With ascend-
ing best-replies, the fixed point correspondence will have a greatest and least selection and both of
these will unambiguously be order-preserving functions of t ∈ T provided that payoffs have increas-
ing differences in (si, t) (see e.g. Vives (2000)). The result above says only that t2 >T t1 will imply
s2 6<S s1 so if, for example, there is a positive shock to demand in the Cournot model, this cannot
lead to a new PSNE where all firms’ output have fallen. On the positive side, the present result is
valid for any selection from the fixed point correspondence Fix : T → 2S , while in the supermodular
case there may be selections which are order-reversing over some interval.

Sometimes, one is able to use the previous result to derive very sharp comparative statics con-
clusions. In symmetric equilibrium (to be examined further in the next subsection), this is the case
if strategy sets are totally ordered.

Theorem 5 (Comparative Statics in Symmetric Games with Totally Ordered Strategy
Spaces) Let Γ be a symmetric submodular game with totally ordered strategy spaces which is param-
eterized by t ∈ T so that payoff functions have strictly increasing differences in (si, t) ∈ Si × T . Let
Fixsym(t) denote the set of symmetric PSNE given t ∈ T . Then t1 ≤T t2 implies that s1 ≤S s2 for
all s1 ∈ Fixsym(t1) and s2 ∈ Fixsym(t2), i.e., the correspondence Fixsym is strongly order-preserving.

Proof: By theorem 4 s1 6>S s2, hence by the symmetry assumption s1 ≤S s2. 2

In theorem 5 the exogenous shock is implicitly assumed to occur symmetrically across the agents. In
the language of Corchón (1994), this is a generalized shock. One application is that of Vives (2000),
section 4.3.1., where t is an excise tax on costs C = C(si, t), in the Cournot model. Theorem 5
shows that in order to reach strong comparative statics conclusions it is unnecessary to assume that
best-replies are single-valued contractions as done by Vives (2000).

If a shock is idiosyncratic, i.e., if it affects only one of the agent’s payoff function, intuition suggests
that a positive shock should make the affected agent’s strategy increase and the others’ decrease. In
a two-player submodular game with the product order, this is indeed the case.22

In the case of an idiosyncratic shock, we have R : S × Ti → 2S where for some agent i,
Ri = Ri(s−i, ti) and for all other agents j 6= i, Rj = Rj(s−j). Assume to simplify notation, that the
idiosyncratic shock affects agent i = 1. Consider an order-reversing selection r : S × T1 → S from R
(which is order-preserving in t1 ∈ T1). Pick s0 such that r(s0, t1) = s0 (a fixed point). Then increase
t1 to t2, and let s1 = r(s0, t2). We note that s1

1 ≥ s0
1 while s1

j = s0
j for j 6= 1. This implies that in

the next step of the iteration, i.e. for s2 = r(s1, t2), s2
1 = s1

1 and s2
j ≤ s1

j for j 6= 1. So in the next
step, s3 = r(s2, t2), s3

j ≥ s2
j for all j, and so s4

j ≤ s3
j , for all j, etc. From τ = 0 to τ = 2, sτ

1 increases,
and from τ = 0 to τ = 2, sτ

−1 decreases. Most likely, this is what our intuition is able to grasp. But
thereafter, i.e, for τ > 2, sτ will oscillate.23 Though both the first- and the second-order effects have

21Again, quasi-supermodularity in the sense of Milgrom and Shannon (1994) is of course equally good.
22As is well known, a two-player submodular game can be cast as a supermodular game by reversing one of the

player’s order. The mentioned comparative statics outcome then follows by standard results on supermodular games
(see the discussion above or the following footnote).

23And so need not necessarily reach a new fixed point. This is in contrast to the the order-preserving case, where
the sequence (sτ )τ∈N0 is monotone and so converges on any compact set. If r is then continuous from below (and the
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the direction suggested by intuition, the higher-order effects may turn these effects around and lead
to counter-intuitive comparative statics outcomes even when the sequence converges to a new fixed
point. Such occurrences cannot be ruled out in general.

Although comparative statics may yield counter-intuitive outcomes in general games with strate-
gic substitutes, the situation is better in aggregative games. This is so because here we can focus
on the backward reply correspondence which sometimes is much better behaved than the best-reply
correspondence. Indeed, it is quite possible that best-replies are non-unique and non-convex while
backward replies are singletons (cf. example 7 below).

For a parameterized family of games, the relevant backward reply correspondence (cf. section 2)
is B(Q, t) = {s ∈ S : si ∈ Ri(hi(Q, si), t), all i ∈ I}. If the game is quasi-submodular and every
payoff function has increasing differences in (si, t) (for fixed s−i), Ri(g(s−i, θi), t) will be decreasing in
s−i and increasing in t in the strong set order. From this it is tempting to conclude by an argument
along the lines of Milgrom and Roberts (1990), theorem 6, that B has greatest and least selections
which are order-reversing in Q and order-preserving in t. This line of thinking is wrong, however,
because for given Q and t the domain of Ri(hi(Q, ·), t) may not be a lattice (invalidating the use of
Tarski’s fixed point theorem).24 The domain is however a semi-lattice, allowing us to conclude as
follows:

Lemma 1 Let Γ be a (quasi-)submodular game in a product order ≥S which is parameterized by
t ∈ T so that each of the payoff functions have increasing differences in (si, t) ∈ Si × T . Then the
parameterized backward reply correspondence B : X × T → 2X ∪ ∅ has a least selection which is
order-preserving in t and order-reversing in Q.

Proof: Let ri denote the least selection from Ri. It follows easily from Topkis’ theorem (Topkis
(1978)) that ri(hi(Q, si), t) is order-preserving in si and t and order-reversing in Q. By a standard
argument from Tarski’s fixed point theorem, one shows that H = {s ∈ S : si ≥ ri(hi(Q, si), t) all i} is
a directed complete semi-lattice. H is invariant under ri and so has a least fixed point (the fixed point
theorem used here can be found in e.g. Dugundji and Granas (2003)). This fixed point is also the least
element of B(Q, t), so B has a least selection. Since ri is order-reversing in Q and order-preserving
in t, so is the least fixed point selection. 2

Theorem 6 Let Γ be a (quasi-)submodular game in a product order ≥S which is parameterized by
t ∈ T so that each of the payoff functions have increasing differences in (si, t) ∈ Si×T . Pick t1, t2 ∈ T
with t1 <T t2 and take s1 ∈ Fix(t1), s2 ∈ Fix(t2). Then it cannot happen that g(s1) > g(s2) if any
one of the following two conditions is satisfied:

1. B(Q, t) is strongly order-preserving in t.

2. B(Q, t) is strongly order-reversing in Q.

If B is an at most single-valued correspondence both 1. and 2. hold, and the conclusion consequently
applies.

least selection in a supermodular game will be continuous from below), the limit is a new fixed point. Obviously, this
new fixed point will be higher than the original one, since so is every element in the sequence. The same argument can
be used for the greatest selection (which is continuous from above) by considering instead a shock from t2 to t1 which
produces a decreasing sequence.

24Take hi(Q, si) = Q− si and assume that X ⊂ RN
+ . Even though Q− si ≥ 0 and Q− s′i ≥ 0, it need not hold that

Q− si ∨ s′i ≥ 0.
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Proof: Assume to the contrary, that is pick s1 ∈ B(Q1, t1), s2 ∈ B(Q2, t2) such that g(s1) = Q1 >
Q2 = g(s2). Under 1. Z ≥ Q1 > Q2 ≥ Y for all Z ∈ g ◦ B(Q1, t2) and some Y ∈ g ◦ B(Q1, t2)
where the latter is true by lemma 1 combined with the argument used in the proof of the corollary to
theorem 4. The proof in the second case is similar and is omitted. 2

If X is totally ordered, as is the case in one-dimensional games, the statement that Q1 > Q2

cannot hold of course means that Q1 ≤ Q2 must hold. So in this case, theorem 6 yields strong
comparative statics conclusions whether the shock is generalized or idiosyncratic. With idiosyncratic
shocks, one can go further. The proof is simple: If Q increases, the backwards reply of any player
not affected by the shock cannot increase. But then the backwards reply of the player affected by the
shock must increase since Q = g(s) where s is the PSNE (see Corchón (1994) for a similar argument).

Corollary Consider a game Γ as in the theorem and assume that 2. holds (B is strongly order-
reversing in Q), X totally ordered, and the shock idiosyncratic (π̃i = π̃i(s, t) for some agent i, and
π̃j = π̃j(s) for all other agents j 6= i). Then t2 ≥T t1 implies that s2

i ≥Si s1
i and s2

j ≤Sj s1
j , all j 6= i

for all s1 ∈ Fix(t1) and s2 ∈ Fix(t2).

Another easily corollary is the following:

Corollary: Consider a game Γ as in the theorem and let b(Q, t) denote any selection from B(Q, t)
which is order-reversing in Q and order-preserving in t (such a selection exists by lemma 1). Then
the conclusions of the theorem and its first corollary are valid for any two PSNE with Q1 = b(Q1, t1)
and Q2 = b(Q2, t2), t2 > t1.

Notice that to the extend that this second corollary is employed, it leads to some selection from
the parameterized fixed-point correspondence Fix : T → 2S with the predicted comparative statics
properties. So among the selections of PSNE is one with “intuitive” comparative statics properties -
but there may also be fixed point selections which are “counter-intuitive”. Still, in many situations
this is perhaps the best one can hope for.

Of course the previous results are of little use, unless one can find simple conditions under
which the backwards reply correspondence is either strongly order-reversing in Q or strongly order-
preserving in t. We shall not seek to exhaust this question here but leave it for future research. There
is, however, a case which is worth mentioning because it shows that the previous results do improve
upon existing results. If for every player i, the fixed point problem:

(5) si ∈ Ri(hi(Q, si), t)

has at most one solution given Q and t, then the backward reply correspondence will be single-valued.
By lemma 1, this implies the conclusion of theorem 6 and its first corollary if X is totally ordered.
Importantly, Ri need not be single-valued or even convex valued (the game quasi-concave) for this to
hold. The next examples illustrate this point. The first is the text-book example of a problem which
is not quasi-concave.

Example 7 (Cournot Equilibrium with U-Shaped Costs) Consider a firm competing a la
Cournot, πi(si, s−i; t) = siP

t1(
∑

j sj)−Ct2
j (si) where Si is a compact subset of R+. Here t = (t1, t2)

are exogenous parameters affecting inverse demand and costs, respectively. Assume that πi is smooth
and that the firm’s solution is interior (si > 0). Then Bi(Q, t) ⊆ {si ∈ Si : DCt2

i (si) = P t1(Q) +
siDP t1(Q)} (the first-order condition is necessary for an interior optimum). It follows that Bi will be
at most single-valued if the equation DCt2

i (si) = P t1(Q)+siDP t1(Q) has at most one solution for all
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t and Q. The right-hand side is a linear function which intersects the second axis at P t1(Q) > 0 and
has slope DP t1(Q). The left-hand side is marginal costs. We assume that DCt2(0) ≤ P t1(Q) so the
marginal cost of producing the first unit is below the market price. That costs are U -shaped of course
means that marginal costs are first decreasing, DCt2(si) ≤ 0 (increasing returns), and then begins
to increase when si becomes sufficiently large, DCt2(si) ≤ 0. It is easy to see graphically that under
these conditions, there can be at most one solution to the equation; so Bi is at most single-valued.

Example 8 (Cournot Equilibrium with Increasing Returns) As in the previous example but
now assuming that DP t1(Q) − D2Ct2(si) ≥ 0 in which case Ct2

i must be concave (decreasing unit
costs).

Obviously there are numerous conditions which lead to the ”‘unique intersection”’ outcome of the
previous two examples ((D2Ct2(si)−DP t1(Q))si + P t1(Q)−DCt2

i (si) non-negative or non-positive,
etc.). In each case, the previous results apply. So, say, a shock to firm i’s costs which decreases
these on the margin will make aggregate output and the output of firm i increase, and the output
of all other firms decrease. An excise tax in the sense of Vives (2000), section 4.3.1. (see discussion
following theorem 5) will lower total output. And so forth. These results are as strong as one could
possibly wish for.

Let us briefly turn to a case which is more restrictive than any of those mentioned, and relate
this to some of the existing literature.25

With smooth payoff functions assume that g(s) =
∑

i si.26 If the game is one of strict strategic
substitutes, then by lemma 2 below every best-reply map will be a single-valued contraction if there
exists α ∈ (0, 1) such that (here πi = πi(si, x) where x is the realization of the aggregator):

(6) D2
11πi + D2

12πi <
(1− α)

α
[D2

21πi + D2
22πi]

Of course, a contraction has exactly one fixed point, so backward replies will be single-valued.
Notice that in the smooth case, D2

21πi+D2
22πi ≤ 0 if and only if π̃i = π̃i(si, s−i) exhibits decreasing

differences in (si; s−i). If one assumes strictly decreasing differences: D2
21πi + D2

22πi < 0, then it is
sufficient to assume that,

(7) D2
11πi + D2

12πi < 0

As explained in the next subsection, strictly decreasing differences and (7) together amount exactly
to the “strong concavity” assumption of Corchón (1994). However, for a game to have strict strategic
substitutes; it is not necessary to assume strictly decreasing differences (for example the strict dual
single crossing property will do). Moreover, as discussed by Vives (2000) (p.98), even if the Corchón-
type assumptions are taken as one’s starting point; it is unnecessarily strong to assume that they
should hold globally since all that matters (when stability is not considered) is that they hold on the
graph of the best-reply correspondence.

3.3 Uniqueness, Global Stability, and Symmetry

To simplify the following results, we shall consider only the case where ≥S is the usual order, strategy
sets are subsets of RN and g(s) =

∑
i si. It is not too hard to generalize to arbitrary aggregators and

25Here we consider general payoff functions. The multivalued generalization can be found in the next subsection.
26As will be explained in the next subsection both smoothness and the linear form of the aggregator are for simplicity

reasons and can be dispensed with.
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arbitrary vector orders (whose interior must be non-empty) - but it is somewhat cumbersome and so
we shall leave this for the interested reader to pursue.

Let πi(qi, qj) denote the player’s payoff function where qj is the realization of the aggregator
(for example in the Cournot model πi(qi, qj) = qiP (qj) − ci(qi)). Assuming that πi is smooth in a
neighborhood containing Si ×X, let D2

ijπi(qi, qj) denote the N by N matrix of second-order partial
derivatives.

Definition 4 πi is said to satisfy the GV condition (GV stands for Granot-Veinott) if there exists a
real, non-zero, and non-negative N by N matrix A such that for all (qi, qj) ∈ Si ×X:

(8) (D2
11πi + D2

12πi)TA � (D2
12πi + D2

22πi)T (I−A)

If (8) holds with (weak) inequality at the diagonal (but not necessarily off the diagonal), then we say
that πi satisfies the (weak) GV condition at the diagonal.

Though (8) may look somewhat frightening, it is just the second-order condition for strictly in-
creasing differences in (y, z) in πi(z − Ay, z + (I − A)y). This, in turn, is just player i’s payoff
function, πi(si, si +y), after the substitution z = Ay +si (here y ≡

∑
j 6=i sj). Of course, the previous

smoothness assumptions are unnecessary for expressing this condition and can therefore easily be
dispensed with. We remark that the GV condition is very closely related to the notion of double
subadditivity introduced by Granot and Veinott (1985). Hence the term Granot-Veinott condition.27

Of course the GV condition coincides with the GV condition at the diagonal if N = 1. Then A
is just a positive scalar, A = α > 0 say, and the GV condition reduces to: There exists α > 0 such
that for all (qi, qj) ∈ Si ×X:

(9) D2
11πi + D2

12πi <
(1− α)

α
[D2

21πi + D2
22πi]

For example in the Cournot model with N = 1 where πi(qi, qj) = qiP (qj) − Ci(qi), (9) will be
satisfied with α = 1 provided that DP −D2Ci < 0 (if Ci is strictly convex and P is decreasing this
will hold).28 Note that (9) with α ≤ 1, implies that the player’s payoff function πi(si, si +

∑
j 6=i sj) is

strictly concave in si if the game is submodular. In fact, this implies “strong concavity” in the sense
of Corchón (1994): D2

11πi + D2
12πi < 0 and D2

21πi + D2
22πi ≤ 0.29

In the following, the (non-negative) matrix A is equipped with the norm: ‖A‖∞ = maxn
∑N

k=1 Ank

(the maximum absolute row sum norm). So for example, ‖IN‖∞ = 1 where IN is the N by N identity
matrix.

27Curtat (1996) (who calls double subadditivity, doubly increasing differences) establishes Lipschitz continuity of
extremum selections in a supermodular optimization problem (Curtat (1996), theorem 2.3.). Curtat’s approach can
be transfered to the present framework by replacing the term Ay in the proof of lemma 2 with a term of the form
(φ(y), . . . , φ(y)) where φ is a Lipschitz continuous order-preserving real valued function. Note that this is a special
case of the GV condition if φ(y) is linear. Of course, the most general approach would simply replace Ay with an
order-preserving and Lipschitz continuous vector valued function; but the gain from doing so is doubtable since, in
applications, one faces the problem of actually finding such a function.

28Amir and Lambson (2000) provide an example where Ci is in fact globally concave, but where it never-the-less
holds that DP −D2Ci < 0.

29Corchón (1994) actually assumes that the inequality is strict in each of these (which, when πi is C2 on a compact
set, implies that the GV condition holds for some α < 1). The condition D2

21πi + D2
22πi ≤ 0 is decreasing differences.

Taken together, the two conditions imply that D2
11πi + D2

12πi + D2
21πi + D2

22πi < 0 (which is strict concavity of πi in
the player’s strategy). Incidentally, strict concavity is just (9) in the limit α →∞.
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Lemma 2 Let Γ be a game with strategic substitutes (in the usual order), and aggregative with
g(s) =

∑
i si. Furthermore assume that Si is a sublattice of RN for each i. If the payoff function

of player i satisfies the GV condition for the matrix A, then player i’s best-reply correspondence has
a Lipschitz continuous selection ri : X → Si, X, Si ⊂ RN , with Lipschitz constant smaller than or
equal to ‖A‖∞. If ‖A‖∞ = 1, such a selection is consequently non-expansive, and if ‖A‖∞ < 1, it
is a contraction. If πi satisfies the GV condition at the diagonal for some A, then player i’s best-
reply correspondence has a selection ri which is Lipschitz continuous ”at the diagonal”, i.e., for all n,
rn
i (x1, . . . , xn, . . . , xN ) will be Lipschitz in xn.

Remark: As is clear from the proof, the result is also valid if the GV condition holds only with weak
inequalities, provided that the game is strictly submodular.

Proof: Let Z∗(y) = arg maxz≥Ay πi(z −Ay, z + (I −A)y). Note that Ri(y) = Z∗(y) −Ay where
Ri(y) = arg maxx≥0 πi(x, x+y) (here 0 denotes the bottom element of Si). Since the game has strate-
gic substitutes, Ri has an order-reversing selection, which is called x∗, and the corresponding selection
from Z∗ is denoted z∗. The constraint correspondence Γ(y) = {v : v ≥ Ay} is ascending because A
is non-negative and so A maps RN

+ into RN
+ (which is the positive cone of the usual order). The GV

condition thus implies that the objective of Z∗ has strictly increasing differences, so for the selection
x∗ and all y′ ≥ y, x∗(y′)+Ay′ ≥ x∗(y)+Ay, or equivalently, x∗(y′)−x∗(y) ≥ A(y− y′). Since x∗ is
order-reversing, this implies in turn that for all y ∈ S̄−i := {y =

∑
j 6=i sj ∈ RN : sj ∈ Sj for all j},

and all d ≥ 0 with y + d, y− d ∈ S̄−i: 0 ≥ x∗(y + d)−x∗(y) ≥ −Ad and 0 ≤ x∗(y− d)−x∗(y) ≤ Ad.
For fixed d, x∗ is consequently ”directionally Lipschitz” in the sense that ‖x∗(y+dε)−x∗(y)‖ ≤ ‖Ad‖ε,
for all ε ∈ R such that y + εd, y − εd ∈ S̄−i. Pick d � 0 such that d ≥ y−y′

‖y−y′‖ ≥ −d for all y, y′ ∈ S̄−i

and let α := ‖Ad‖. For y, y′ ∈ S̄−i, let u = y′ − y and note that when δ = ‖u‖, δd ≥ u ≥ −δd (since
d ≥ u

‖u‖ ≥ −d). But then f(y − δd) − f(y) ≥ f(y + u) − f(y) ≥ f(y + δd) − f(y), which implies,
‖f(y′)− f(y)‖ = ‖f(y +u)− f(y)‖ ≤ max{‖f(y− δd)− f(y)‖, ‖f(y + δd)− f(y)‖} ≤ αδ = α‖y′− y‖,
where the last inequality was shown to hold above. Let D = {d ≥ 0 : d ≥ y′−y

‖y′−y‖ ≥ −d for all y′, y ∈
S̄−i} and define ρ = mind∈D ‖Ad‖. The previous argument implies that x∗ is (globally) Lipschitz
continuous with Lipschitz constant less than or equal to ρ. If, ‖ · ‖ is the maximum norm, then
ρ ≤ ‖A(1, 1, . . . , 1)T ‖ = ‖A‖∞, from which the first statements of the theorem follow. The statement
concerning the GV condition at the diagonal is shown by applying the exact same argument to the
n’th coordinate of the order-reversing selection holding x−n fixed. 2

Say that s∗ is a globally stable fixed point if, given an arbitrary initial strategy s0 ∈ S, the best-
reply iteration st = R(st−1), t = 1, 2, 3, . . . converges to s∗ in the usual topology. Recall that a game
has strict strategic substitutes if every best-reply map is strongly order-reversing.

Theorem 7 (Uniqueness and global stability theorem) Let Γ be a game with strict strategic
substitutes in the usual order and aggregative with g(s) =

∑
i si, Si ⊂ RN . If for every i, πi satisfies

the GV condition (8) for some A with ‖A‖∞ < 1 (where A may depend upon i), there exists a unique
and globally stable PSNE. If the game is symmetric, this PSNE will be a symmetric PSNE.

Proof: If every selection from a best-reply correspondence is order-reversing and continuous (and
under the conditions of the theorem this will be the case), then this correspondence must be single-
valued. From this, lemma 2, and Banach’s contraction principle the first statement is immediate.
The second (concerning symmetric games) follows by the argument used in the next theorem. 2

Example 9 Let N = 1 and take πi(qi, qj) = qiP (qj) − Ci(qi) (the Cournot model), Si = [0, bi],
bi ∈ R+, and assume that for every i, 0 < qiD

2P (qj) + D2Ci. As is seen, this is (9) with α = 0.5,
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hence every best-reply map is a contractive function and there will therefore exist a unique and globally
stable PSNE.

Theorem 7 (which might more rightfully be seen as a corollary to lemma 2), substantially strength-
ens the conclusion of our main theorem 1 under the conditions of the GV condition. If, for player
i, the GV condition holds for some A but not one for which ‖A‖∞ < 1, then a selection will still
be (Lipschitz) continuous by theorem 2. The existence of a fixed point then follows from Brouwer’s
fixed point theorem if S is convex and compact, but our main theorem implies the existence of a
PSNE under much weaker conditions.

Symmetric games with strategic substitutes do not necessarily posses symmetric PSNE. Even if
the game is aggregative and has only two players (hence can be cast as a supermodular game with
a change of order, cf. Vives (1990)), it may fail to have a symmetric PSNE. Thus, take I = 2,
Si = Sj ⊂ R, and g(s) = s1 + s2. Then (s∗, s∗) ∈ Si×Si is a symmetric PSNE if and only if it solves
s∗ ∈ R(s∗). But this problem need not have a solution:

Example 10 Let I = 2, Si = Sj = {0, 1}, which is a chain, and R(0) = {1}, R(1) = {0}, which is
an order-reversing singleton correspondence (hence strongly order-reversing). There clearly does not
exist a symmetric PSNE. On the other hand there do exist PSNE (theorem 1) and the set of PSNE
forms an antichain (theorem 3). Indeed (s∗1, s

∗
2) = {0, 1} and its permutation (s∗1, s

∗
2) = {1, 0} are

both fixed points of the joint best-reply correspondence.

In comparison, a symmetric game with strategic complementarities has a symmetric PSNE (this
statement does not include Cournot duopoly since this is not supermodular if agent’s strategy sets
are endowed with the same order). The next result addresses the problem thus raised. In the single
market Cournot model, it is well known that if costs are convex and inverse demand decreasing, then
a symmetric PSNE exists (cf. Roberts and Sonnenschein (1976)). As noticed by Amir and Lambson
(2000), this result immediately extends to the case where DP −D2Ci < 0 (which is (9) when α = 1).
In fact, the result readily generalizes to the general one-dimensional model assuming merely that the
GV condition (9) holds for some α > 0. The reason is in any of these cases that the best-reply map,
which maps from R into subsets of R, has a selection which ”has no jumps down”. Theorem 8, which
relies on theorem 1 and therefore is a new result, shows that in submodular games with strategy
sets of arbitrary dimension, symmetric PSNE exist provided that there are ”no jumps down” at the
diagonal of the best-reply correspondence:

Theorem 8 (Existence of Symmetric PSNE) Let Γ be a symmetric submodular game (in the
usual order) and aggregative with g(s) =

∑
i si, Si ⊂ RN . If for every i, πi satisfies the GV con-

dition at the diagonal (with no restriction on ‖A‖∞) and if the strategy set is convex, there exists
a symmetric PSNE. The same result holds if Γ is strictly submodular and πi satisfy the weak GV
condition at the diagonal. Furthermore, if each Si is a chain and the game is either regular or strictly
submodular, the symmetric PSNE is unique.

Proof: Clearly (s∗, . . . , s∗), s∗ ∈ Si, is a symmetric PSNE if and only if s∗ = r((I − 1)s∗), where
r is some selection from R. By lemma 2, rn((I − 1)(s−n, sn)) is (Lipschitz) continuous in sn given
s−n = (s1, . . . , sn−1, sn+1, . . . , sN ). Define pn(s−n) = {s̄n : s̄n = rn((I − 1)(s−n, s̄n))}. By Brouwer’s
fixed point theorem, pn will be non-empty valued, and moreover it will be a function (a singleton
correspondence) because rn is order-reversing in sn (a decreasing function from R to R can intersect
the 45◦-line at most once). Finally, pn will clearly be order-reversing. sn = pn(s−n), all n, if and
only if sn = r((I − 1)(s−n, sn)) for all n. But the function p = (pn)N

n=1 satisfies all conditions of
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theorem 1, so a fixed point exists. Uniqueness follows from theorem 2 in case the game is strictly
submodular, and from theorem 3 if it is regular. Indeed, if there existed two symmetric PSNE these
would, because of symmetry, necessarily be ordered by ≥S which would be in contradiction with these
theorems’ conclusion. 2

The previous theorem shows, among other things, that if one studies symmetric two-player games
with strategic substitutes; it is not advantageous to recast these as a supermodular game if atten-
tion is focused on symmetric equilibria. The existence of symmetric PSNE is much more effectively
addressed in the submodular framework. We mention again that extending the above results to
arbitrary aggregators is straight-forward, albeit cumbersome (one ”simply” inserts the expression for
the aggregator and derives the conditions for increasing differences as in the proof of theorem 2).

4 Examples of Games with Strategic Substitutes

In this section we present several examples of aggregative games with strategic substitutes, and use
these to illustrate the results and methods of the preceding sections.

4.1 Multimarket Cournot Equilibrium

Existence of a pure strategy Cournot equilibrium is a topic which has been subject to much interest.
In symmetric one-good, convex-cost Cournot games, existence was proved for any number of firms
by McManus (1964) and Roberts and Sonnenschein (1976). The latter two authors (Roberts and
Sonnenschein (1977)) pointed out that in general, a PSNE need not exist in such games. On the
other hand, the setting of Roberts and Sonnenschein (1977) do admit PSNE if there are strategic
substitutes, because there are only two firms (so Tarski’s fixed point theorem can be made to bear,
see e.g., Vives (1990)). With any number of firms, the presence of general equilibrium effects typically
destroys additivity of the aggregator (see also the study of price competition a la Bertrand below) and
as explained by Amir (1996), Section 3, such games tend towards strategic substitutes when there are
(non-decreasing) costs. Using theorem 1 we are able - for the first time in the literature when there are
more than two firms - to conclude that there exists a pure strategy Nash equilibrium if the game has
strategic substitutes. Using the results of section 3 we are, moreover, able to characterize such games
from various perspectives. The specific model we consider is closely related to Bulow et al. (1985),
who in their seminal study consider multimarket Cournot duopolies and introduce the distinction
between strategic substitutes and strategic complements. In the strategic complementarities case,
Topkis (1998), section 4.4.3., generalizes this to N ∈ N markets and I ∈ N players. It is this model
we consider here with strategic substitutes.

Consider a set I = {1, . . . , I}, I ≥ 2 of firms who compete in N ≥ 2 markets. A strategy for firm
i ∈ I, is a vector si = (s1

i , . . . , s
N
i ) ∈ Si = [0, xi] ⊂ RN

+ where xi � 0. The payoff to firm i, its profit
function, is assumed to be an upper semi-continuous function of the form:

(10) πi(si, s−i) = s1
i P

1(g(s)) + . . . + sN
i PN (g(s))− Ci(si)

where g :
∏

i Si → X ⊆ RN
+ is an aggregator. In the simplest situation, inverse demand in market n,

Pn, depends only on the total supply of good n in which case we take g(s) =
∑

i si and Pn(g(s)) =
P̃n(g1(s)) = P̃n(

∑I
i=1 sn

i ).30 In the more general case, demand in market n depends on total supply
in all markets, so g is as before and Pn(g(s)) = P̃n(

∑I
i=1 si). We could also assume that some firm

holds a monopoly in one of the markets, and compete in the remaining markets (we do so simply
30Note that this will be the case in repeated Cournot games.
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by restricting the strategy sets). This would result in the model studied in the two-firm, two-market
case by Bulow et al. (1985).

Strategic substitutes in this model means that if a firm competes more aggressively in a market,
then this will make the other firms lower their supply in that market. By Topkis’ monotonicity
theorem (Topkis (1978)), this outcome is ensured if each Si is a lattice, (10) is supermodular in
si, and has decreasing differences in (si; s−i). A pure strategy Nash equilibrium will then exist
irrespective of any convexity or quasi-concavity assumptions.

If every firm chooses according to a decreasing selection from their best-reply correspondence,
we have by theorem 2 that the set of pure strategy Nash equilibria is an antichain. If the game is
one of strict strategic substitutes, two ordered PSNE can only differ in the entry of a single firm
(corollary to theorem 3). By theorem 4, when parameterizing such that best-replies are increasing in
the exogenous parameter, an increase in this parameter cannot lead to a situation where all outputs
decrease. In fact, in symmetric equilibrium, we know that the PSNE is order-preserving in the
exogenous variable (theorem 5).

Under stronger conditions we can do better. Thus take Pn(g(s)) = P̃n(
∑I

i=1 sn
i ), in which case

the game is submodular if each Ci is submodular and P̃n is non-increasing and concave.31 If the
game is symmetric, a symmetric PSNE exists by theorem 8 if, in addition, C(s) = C(s1, . . . , sN )
is convex in each of its coordinates (since this is the GV condition at the diagonal with A equal
to the identity matrix). If the game is strictly submodular (e.g. if each P̃n is strictly decreasing),
this symmetric PSNE is unique. If, furthermore, C is a strictly convex function, the symmetric
PSNE is the unique PSNE and it is globally stable (theorem 7). In this case, the backward reply
correspondence is single-valued and so theorem 6 as well as its corollaries apply, leading to a number
of stronger comparative statics conclusions for generalized as well as idiosyncratic shocks.

4.2 Team Projects

Whereas in models of imperfect competition players’ payoff typically decrease when other players raise
their strategy, there are also economic situations where the opposite is true. An example is in the team
project game studied by Dubey et al. (2002). Here agents contribute effort to a common project which
may or may not succeed, but is more likely to do so the more effort each agent contributes. Strategic
substitutes arise because the team’s members have an incentive to ’free-ride’, i.e., contribute less if
they observe that other agents contribute more. To take a familiar example, consider I = 3 economists
who cowrite an article (so success=publication, and effort=time devoted to writing the paper). Each
player has strategy set Si = [0, 1], the interpretation being that effort is equal to probability of success
si ∈ Si for player i. Consider then the aggregator g(s) = 1 − (1 − s1)(1 − s2)(1 − s3), which is the
probability of success of a project in the situation where every agent has to fail for the project to fail
(it is sufficient that one of the authors proves a good theorem). The function g is strongly increasing,
and to be sure it is an aggregator: If agent i knows the probability of publication Q = g(s−i, θi) when
she does not work (θi = 0), she is able to correctly anticipate the probability of publication, g(s), for
all si ∈ Si via the function Fi(Q, si) = Q + si −Qsi (compare with (2)).

The aggregator g has decreasing differences, hence we face a game with strategic substitutes
if payoff functions are of the form πi(s) = Pi(g(s)) − Ci(si), where Ci is an arbitrary ‘effort cost
function’, and Pi is an increasing, concave function which measures the ‘return to success’.32 Dubey

31Of course concavity is not necessary for this outcome: The necessary and sufficient condition for decreasing differ-
ences in case P n is smooth reads: DP n + sn

i D2P n ≤ 0 all n, i and s ∈ S. On top of this, we could look for conditions
such that (10) becomes a (weakly) quasi-submodular game, which would yield still weaker conditions.

32As everywhere else in this paper concavity of Pi is unnecessary although highly practical in this specific case (if f
is concave and g has decreasing differences then f ◦ g has decreasing differences, cf. Topkis (1978), section 3). In the
smooths case there will be decreasing differences to player i, iff −(1− sj)DP +(1− sk)(1− sj)D

2P ≤ 0, where j, k 6= i.
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et al. (2002) prove the existence of a PSNE in this game. Using the results in this paper a number
of new results and generalizations are possible.

As for generalizations, the aggregator does not have to be of the specific form of Dubey et al.
(2002). It might for example be more realistic to assume that the probability of success is a function
of effort, i.e., pi = hi(si), where pi is now the probability that agent i succeeds when his effort is
si, and hi is a function from Si into [0, 1] (not necessarily onto, so it may be that an agent cannot
be sure of success no matter what his effort is). Under this description we get g(s) = 1 − (1 −
h1(s1))(1 − h2(s2))(1 − h3(s3)), which is an aggregator provided that each hi is strictly increasing.
Again this aggregator has decreasing differences so a PSNE will exist. Another generalization in
the one-dimensional case would be to consider other probability distributions. Finally, this paper’s
existence result applies also to the case where the team has N ≥ 2 projects. One would, for example,
then take g(s) = (1− (1− sn

1 )(1− sn
2 )(1− sn

3 ))N
n=1, i.e., the vector of probabilities of success for each

of the N projects. The effort cost function should be a submodular function Ci = Ci(s1
i , . . . , s

N
i ), and

the payoff function could be the sum of increasing and concave ’individual project payoff functions
similar to in the multimarket oligopoly model studied in a previous subsection.

Now, existence is of course just a consistency check. What else can we conclude ? First, if
the game is strictly submodular; the set of equilibria is an antichain except possibly for ordered
PSNEs where at most one of the authors works less than he could have done. Now, the “culprit”
will necessarily be indifferent between working more or less (both are best-replies given the other two
authors’ effort). Intuitively, he is aware that working less decreases the probability of publication.
Working more increases the success of publication but also increases effort-cost and these two effects
exactly balance each other in terms of the author’s payoff. If we are willing to assume that in such a
situation authors are bound by a selection rule (e.g., “if indifferent, pick the greatest best-reply”) the
equilibrium set will become an antichain (theorem 2). For those of us who coauthor papers this has
an important implication: There will be no coordination failure (although the group’s social optimum
is of course not necessarily reached through non-cooperative behavior). In the one-dimensional case,
if the game is symmetric there is at most one symmetric equilibrium (corollary to theorem 3). And by
theorem 8 a symmetric PSNE will exist if, for example, costs are convex (see the previous example
for a similar argument). As in the other examples studied in this section one can also ask and
answer various comparative statics questions. As an example, assume that the team is symmetric
and take the case where the probability of success is a function of effort; but now also of an exogenous
parameter t: pi = h(si, t). If h is increasing in t, so t measures how well the team knows the editor,
say; an increase in t will make all of the team’s members place less effort into the project in symmetric
equilibrium. And if that is not a realistic prediction, what is ?

4.3 Bertrand Oligopoly with Differentiated Products

Let each strategy set, Si, be a compact subset of R+. The profit function of firm i is π̃(pi, p−i) =
piDi(p)−Ci(Di(p)), where pi ∈ Si is the price set by firm i, p = (p1, . . . , pI) ∈ S, and Di : S → R+ is
the demand function for good i (S is the joint strategy set). If this game is (quasi-)supermodular, it
is known that a PSNE exists (see e.g. Vives (2000)). If it is not, existing literature has no answer to
the existence question without quasi-concavity.33 In addition, comparative statics of fixed points is
typically a daunting task even if sufficient assumptions are imposed for the implicit function theorem

33Milgrom and Roberts (1990) (see also Topkis (1979)), study Bertrand oligopoly as a log-supermodular game under

the assumption of linear costs where π̃(pi, p−i) = (pi−ci)Di(p). The game is then log-supermodular if ∂2 log Di(p)
∂pi∂pj

≥ 0 for

all i, j. With linear costs, the game is similarly log-submodular, and so a game of strategic substitutes, if ∂2 log Di(p)
∂pi∂pj

≤ 0

for all i, j. This outcome comes about, for example, if goods are gross complements and the demand function exhibits
decreasing differences.
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to apply. No doubt, comparative statics runs most smoothly in the case of strategic complementaries.
But as we shall see, in many instances this paper’s results can be used with success also when there
are strategic substitutes.

To keep things simple, assume that demand is of the constant expenditure form, Di(p) =
1
pi

hi(pi)P
j hj(pj)

where each hj : Sj → R++ is an increasing function (so goods are gross complements).

As is easily verified g(p) =
∑

j hj(pj) is an aggregator (it is separable and any separable func-
tion is an aggregator as shown in example 2). Since we can write π̃i(pi, p−i) = π(pi, g(p)) where
π(pi, g(p)) = hi(pi)

g(p) − Ci( 1
pi

hi(pi)
g(p) ), this game is aggregative, as indeed it will be under a great many

other demand specifications. Specific examples which belong to the constant expenditure form are
CES with complementarities and (increasing) exponential demand (see Vives (2000), chapter 6). Note
that we do not assume that demand is symmetric across the goods (hi = h all i for some function
h), so the aggregator will (generally) not be a symmetric function either. Under these, quite general,
conditions we now have by theorem 1 that there will exist a PSNE.

Assuming that all firms produce in equilibrium (so solutions are interior) and that Di is differen-
tiable; the following first-order conditions are necessary (but need not be sufficient):

(11)
pi −DCi

pi
=

1
ηi(p)

, for all i ∈ I

where ηi(p) is the elasticity of demand. In the constant expenditure case we may write ηi as a function
of pi and Q and insert to get the following necessary condition for pi ∈ Bi(Q) (here, as throughout,
Bi is the backward reply correspondence):

(12) 1 +
Dhi(pi)

Q
− piDhi(pi)

hi(pi)
=

pi

pi −DCi(
hi(pi)
piQ

)

If we impose assumptions such that this equation has at most one solution for every Q we can,
because strategy sets are chains, apply the first corollary to theorem 6.34 Thus take Di = Di(p, t)
and increasing in t (a demand shock). Then in a PSNE, pi will be increasing in t and pj , j 6= i,
will be decreasing in t. If the game is symmetric, things are simpler. With parameterized demand
D(p; t) = Di(p, t) all i and increasing in t, a positive demand shock will unambiguously lead to a price
increase in symmetric equilibrium (theorem 5). And, regardless of whether the game is symmetric
or not, such a positive shock to demand could never lead to a new PSNE where all firms lower their
price (theorem 4). Also worth mentioning is that, in contrast to the supermodular case, where the
presence of multiple equilibria would motivate government intervention so as to “push” the firms to
the least PSNE (where prices are at their minimum), the equilibrium set will now tend towards being
an antichain. If so, any change from one PSNE to another will be associated with a rise in some prices
and a fall in others. Consequently, government intervention in the sense of “coordination requests”
will generally not lead to a Pareto improvement for the consumers.

4.4 Competition Between Teams

In all of the previous models, agents were implicitly assumed to have the same strategic attitudes
toward each other (“if you get more aggressive, I do to”, “if you increase your effort, I will lower mine”,
etc., etc.). It is not hard, however, to think of games where a mixture of the two coexist. Indeed,
whenever a team or coalition with common interests face one or more other teams with opposing

34There is a variety of cases where Bi will be at most single-valued. To mention one, if hi(pi) = pεi
i , 0 < εi < 1; this

will hold provided that the term
DCi(p

εi−1
i Q−1)

pi
is decreasing in pi.
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interests, this will be the case. Below we consider an arms race with an alliance on one side. A similar
example is the game studied experimentally by Dufwenberg and Gneezy (2000). There the teams
are groups of firms which compete monopolistically with each other and share profits within groups
according to a simple bargaining scheme. If the members of a team have an incentive to “free-ride”,
this will, as we shall see, give rise to a game of strategic substitutes.

Let us first consider the general case in one dimension (Si ⊂ R all i). Let π̃(si, s−i) denote the
actual payoff function of player i. Assume that each π̃i is twice continuously differentiable, and to
simplify notation let π̃(s, s̄) =

∑I
i=1 π̃i(si, s̄−i). Then consider the matrix of cross-derivatives, D2

ss̄π̃,
which is the matrix with ∂2π̃

∂si∂s̄j
in the i’th row and j’th column. D2

ss̄π̃ will have a zero diagonal, so
if D2

ss̄π̃ is non-positive (non-negative), the game is submodular (supermodular) in the usual order.
The point here is that if the game consists of a mixture of agents’ attitudes, D2

ss̄π̃ might for example
look like:

(13) D2
ss̄π̃ =

 0 − +
− 0 −
+ − 0

 or D2
ss̄π̃ =

 0 + −
+ 0 +
− + 0


More generally, consider a game with I-players and assume that D2

ss̄π̃ after suitable symmetric
permutations of rows and columns has the following combinatorial sign structure:35

(14) D2
ss̄π̃ =

[
A11 A12

A21 A22

]
where A11 ∈ RM×M and A22 ∈ R(I−M)×(I−M) are non-positive, and A12 ∈ RM×(I−M) and A21 ∈
R(I−M)×I are non-negative matrices. As may be shown, this sign-combinatorial structure is necessary
and sufficient for the game to be submodular with respect to an order whose positive cone is an
orthant.36 Similarly, the game will be supermodular after such a change of order if and only if
symmetric permutations can bring D2

ss̄π̃ to the form (14) where A11 and A22 are non-negative, and
A12 and A21 are non-positive.37 So in (13) we conclude that the first cross-derivative matrix reflects a
game with strategic complementarities while the second underlies a game with strategic substitutes.

Now to the concrete example of an arms race. The structure is a one-shot race as studied by
Milgrom and Roberts (1990), but with three countries, two of which are allied. Call the countries
the US, the UK, and the Soviet Union (SU). The strategy sets are of the form Si = [0, bi] ⊂ R,
bi > 0. The payoff to the USA and the UK - who form an alliance - is π̃i(sUS, sUK, sSU) = Bi(sUS +
sUK − sSU) − Ci(si), i = US,UK, where Bi are smooth and concave functions and Ci are arbitrary
functions. The payoff to the USSR is π̃SU(sUS, sUK, sSU) = BSU (sSU − sUS − sUK)− CSU(sSU), with
the same conditions on BSU and CSU as for Bi, Ci. Calculating the second-order cross-derivative
matrix D2

ss̄π̃, we get the second combinatorial sign structure in (13) by placing the US in the first
row/column, the Soviet Union in the second row/column, and the UK in the third row/column. So
this is a game of strategic substitutes in the order ≥S defined by s1 ≥s s2 ⇔ s1

US ≥ s2
US, s1

SU ≤ s2
SU,

s1
UK ≥ s2

UK (whose positive cone is H = R+ ×R− ×R+). As is obvious, the game is also aggregative
with aggregator g(s) = sUS + sUK − sSU (which preserves the order ≥S).

35Symmetric permutation means that if row i and j are interchanged then column i and j must be interchanged also.
36Let H be a pointed, convex cone in RN (a set if pointed if a,−a ∈ H implies a = 0). Such a cone defines a (partial

vector) order by virtue of x ≥ y ⇔ x − y ∈ H. The order is then said to have positive cone H. H is an orthant if it
is a set of the form H =

Q
n Rα(n), α(n) ∈ {−, +} all n. For example RN

+ is an orthant, and it is the positive cone of
the usual order. For an in depth treatment of such orders and their relationship to monotone comparative statics the
reader is referred to Jensen (2004).

37These results are non-trivial. For further elaboration and references see Smith (1988).
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So a PSNE exists, and the analysis progresses as in the previous examples but with the order
being ≥S . As an example: If the game is strictly submodular, there will not exist two PSNE which
are ordered by ≥S - so if, say, the Soviet Union’s stock of arms is lower in one PSNE than in another,
either the US or the UK must have a lower stock of arms here too.

5 Appendix: Proof of Theorem 1

As in the one-good Cournot equilibrium case studied by Novshek (1985) and Kukushkin (1994), the argument
focuses on the backward reply correspondence B : X → 2S defined in section 2. As explained in section 2, we
have (the straight-forward proof is omitted):

Lemma 3 The joint best-reply correspondence R has a fixed point, s∗ ∈ R(s∗), if and only if there exists
(Q, s) ∈ X × S such that g(s) = Q and s ∈ B(Q).

Let r : S → S be an order-reversing selection from R. The graph of r is the set graph(r) = {(s, t) ∈ S×S : s =
r(t)}. Since R is upper semi-continuous, the closure of graph(r), denoted graph(r), is contained in the graph
of R, and so the sectioning of graph(r), s 7→ {t ∈ S : (s, t) ∈ graph(r)} ∈ 2S is an upper hemi-continuous
correspondence contained in R. In the following we replace R with this sectioning and note that this does not
upset lemma (3)’s “if” part when B is defined on the subcorrespondence rather than R. The next result should
be compared with Condition III in Smithson (1971). In order to get a transfinite induction machinery up
and running, some condition of this type is required and conveniently it turns out that upper hemi-continuity
suffices for our purposes.

Lemma 4 Consider the backwards reply map B : X → 2S ∪ ∅. Let C be a maximal chain in X and f : C → S
an order-reversing selection from the restriction of B to C (if such a selection exists). Letting c0 denote the
infimum of C, there exists y0 ∈ B(c0) such that y0 ≥S f(Q) for all Q ∈ C.

Proof: Let (cn)n∈N be a sequence of elements in C such that cn ≥ cn+1 for all n and limn→∞ cn = c0. Since
C is maximal, it will be a closed subset of X (Ward (1954), lemma 4). Since X is first countable - it is, in
fact, Hausdorff - any point in X can be reached as the limit of a sequence from X (and an infimum evidently
by a decreasing sequence). Since f is order-reversing, f(cn) ≤ f(cn+1) for all n, which implies that for all
m ∈ N: y0 := limn→∞ f(cn) ≥S f(cm) because the order is closed. y0 is a well-defined element of X because
X is compact and so chain-complete. Since yn = f(cn) ∈ B(cn) for all n, y0 ∈ B(c0) because B has a closed
graph. 2

For the following we need some more definitions. A subset D ⊆ X of the poset X, is directed (filtered) if
every two-element subset of D has an upper (lower) bound in D. A poset is a directed complete partial order
(DCPO) if every directed subset has a supremum, and it is a filtered complete partial order (FCPO) if every
filtered subset has an infimum. A map f : X → Y between two DCPOs is Scott-continuous if it is order-
preserving and preserves directed sups, the latter meaning that f(supD) = sup f(D) for any directed subset
D ⊆ X. For an order-reversing function f on a DCPO, we say that f reverses directed sups if for any directed
subset D ⊆ X it holds that,38

(15) f(supD) = inf f(D)

By assumption (iii) of the theorem, there exists an upper bound Q∗ ∈ X such that g(s) ≤ Q∗ whenever
s ∈ S. We may assume that B(Q∗) 6= ∅ without loss of generality for if this is not the case, each best-reply
function can be extended along the lines of Kukushkin (1994).39 Next define a collection P of subsets P of X by:

(P1) Q∗ ∈ P

38Note that (15) is well-defined if X is a DCPO and Y is a FCPO since f(D) will be filtered.
39See Kukushkin (1994), p.24, immediately following Proposition 1 where the extension of each φi exactly plays the

role of making the backward reply correspondence well-defined at Q∗ (Q∗ corresponds to m in Kukuskin’s notation).
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(P2) If Q ∈ P , Z ∈ X, and Q ≤ Z ≤ Q∗, then Z ∈ P .
(P3) If Q ∈ P then M(Q) = {s ∈ B(Q) : g(s) ≤ Q} 6= ∅.
(P4) Let M : P → 2S be as defined under (P3). There exists an order-reversing selection from M ,

f = (f1, . . . , fI) : P → S which is maximal in the sense that for all Q ∈ P , s ∈ M(Q) and s ≥S f(Q) implies
s = f(Q).

In the following we shall refer to a selection f which is maximal in the sense of (P4), as a maximal order-
reversing selection. This should not be confused with a greatest selection, a term we reserve for the case
f(Q) = sup M(Q) which obviously requires that each M(Q) has a supremum (and this is rarely the case). It
is an immediate consequence of (P1) and (P2) that any P ∈ P is a DCPO thus when, in the following, we
speak of the supremum of a directed subset of P ; this is a well-defined statement.

Lemma 5 Order P by inclusion, i.e., consider the poset (P,⊆). There then exists a subset P ∗ ∈ P which is
maximal (P ∈ P and P ∗ ⊆ P ⇒ P = P ∗).

Proof: P is non-empty since {Q∗} ∈ P. If (Pm)m∈N is a chain in (P,⊆), then ∪m∈NPm is evidently an upper
bound for this chain which satisfies (P1)-(P3). As for (P4), we may order the chain (Pm)m∈N such that if f is
a maximal order-reversing selection over Pm, then its restriction to Pn will be maximal order-reversing for all
n < m. Thus we may pick a sequence (fm)m∈N of order-reversing functions fm : Pm → S, Pm ⊆ Pm+1, such
that fm(x) = fn(x) for all x ∈ Pn, m > n. This sequence of functions defines a function f∗ : ∪m∈NPm → S:
If x ∈ ∪m∈NPm then x ∈ Pq for some q ∈ N, and we then (uniquely) assign f∗(x) := fq(x). Since f∗ clearly
is maximal order-reversing, (P4) has been verified for the upper bound of the chain. Since, by Zorn’s lemma,
there exists a maximal element in any non-empty poset whose chains have upper bounds, P has a maximal
element P ∗. 2

The set of maximal subsets in the sense of the previous lemma is denoted P∗. Note that there may be
more than one such maximal subset and that for each P ∗ ∈ P∗ there is associated a maximal order-reversing
selection f : P ∗ → S.

Lemma 6 Let P ∗ be a maximal subset of P, i.e., P ∗ ∈ P∗, and C ⊆ P ∗ a maximal chain. Then the infimum
of C exists and lies in C.

Proof: Since every non-empty chain in X has an infimum, C (which is a maximal chain in X, in particular it
is non-empty), has an infimum c0 ∈ X. We wish to show that c0 ∈ C ⊆ P ∗. By definition, c0 ≤ c, for all c ∈ C,
and c0 is an upper bound for the elements with this property. (P1)-(P2) are trivially satisfied for C ∪{c0}. By
(P4), there exists a maximal order-reversing selection f : P ∗ → S. Clearly the restriction of f to C, call it
f|C, is maximal order-reversing on C. We now apply lemma 4 to f|C : C → S. This allows us to conclude that
f|C has an order-reversing extension to C ∪{c0}: There exists y ∈ B(c0) such that y ≥S f|C(Q) for all Q ∈ C.
Studying the details of the proof of lemma 4, we notice that y := limn→∞ f(cn) where (cn)n is a decreasing
sequence from C. From this follows that (P3) will be satisfied for {c0}. Since the set M(c0)∩ {z ∈ S : z ≥S y}
is the intersection of a compact and a closed sets it is compact, and since the order is closed, we are then able to
apply Zorn’s lemma once again to conclude that it contains a maximal element, y∗ ∈ H(c0)∩ {z ∈ S : z ≥S y}
(for a general statement and a detailed proof of this type of application of Zorn’s lemma, see theorem 1 in
Ward (1954)). Extending f|C from C to C ∪ {c0} is then done simply by defining f|C(c0) = y∗. The outcome of
this somewhat lengthy argument, is that the extension thus constructed will be maximal order-reversing in the
sense of (P4). But then c0 ∈ C for if this were not the case, we would have reached a contradiction with the
first part of the lemma (P ∗ would not be a maximal subset of X with the properties (P1)-(P4)). 2

By the boundary of P , written ∂P , we mean the subset of minimal elements of P . It is clear that any
minimal element is the infimum of a maximal chain so by lemma 6, ∂P ⊂ P when P is maximal in (P,⊆).
The interior of P , P ◦, is the set P\∂P and by an interior net we mean a net which is a subset of P ◦. The next
result shows that maximal order-reversing selections always reverse directed sups in the sense defined above.

Lemma 7 Let P ∈ P and f : P → S a maximal order-reversing selection as defined under (P4). Then
f(supD) = inf f(D) for any directed subset D ⊆ P , i.e., f reverses directed sups on P .
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Proof: Since f is order-reversing, f(d) ≥ f(supD) for all d ∈ D, i.e., f(supD) is a lower bound of f(D).
Certainly then inf f(D) ≥ f(supD). Since M is u.h.c., inf f(D) ∈ M(supD). But then inf f(D) = f(supD)
because if not inf f(D) > f(supD) contradicting the maximality of f(supD) in M(supD). 2

The previous proof applies more generally. If F is any u.h.c. correspondence and f is a maximal order-
reversing selection (an order-reversing selection of maximal elements) from F ; then this selection reverses
directed sups. We will be using this observation in a moment. Among the direct consequences of lemma 7 is
that f is “continuous from below” on P : If (Qn) is an increasing sequence (or, more generally, a net); then
limn f(Qn) = infn f(Qn) = f(Q) when Q is the supremum of (Qn). Additionally, it is straight-forward to
adapt proposition II-2.1. in Gierz et al. (2003) in order to conclude that for any interior net (Qn) in P ,

(16) f(lim inf Qn) ≥ lim sup f(Qn)

Note (16)’s close proximity with the standard definition of upper semi-continuity (which parallels Scott-
continuity’s relationship with lower semi-continuity as explained in Gierz et al. (2003), chapter II). Recall
that we have assumed that the aggregator g : S → X is an order-preserving and continuous function. Conse-
quently,

(17) g(f(lim inf Qn)) ≥ g(inf sup f(Qn)) = inf
n

g( sup
m≥n

f(Qm)) ≥ lim sup g(f(Qn))

which is to say that the composition g ◦ f : P → X (also) reverses directed sups.

To simplify notation, define R(h(Q, s)) = (Ri(hi(Q, si))i∈I .

Lemma 8 Let P ∈ P and f : P → S be a maximal order-reversing selection. Then for all Q ∈ P and i ∈ I:

(18) fi(Q) = supRi(hi(Q, fi(Q)))

where the supremum is taken on (Si,≥i).

Proof: Imagine not, i.e., that there exists some z >i 0 such that fi(Q) + z >i fi(Q) and fi(Q) + z ∈
Ri(hi(Q, fi(Q))). But then fi(Q)+z ∈ Ri(hi(Q+δ, fi(Q)+z)) where δ > 0 is such that hi(Q, fi(Q)) = hi(Q+
δ, fi(Q)+ z) (such a δ exists because hi is continuous). Note that fi(Q)+ z ∈ Bi(Q+ δ) and Fi(x, fi(Q)) = Q,
Fi(x, fi(Q) + z) = Q + δ where x = hi(Q, fi(Q)). Clearly, x ≥ g(f−i(Q), θi), for if xm < gm(f−i(Q), θi),
some m, then gm(fi(Q)) = Fm

i (gm(f−i(Q), θi), f
M(m)
i (Q)) > Fm

i (xm, f
M(m)
i (Q)) = Qm. But then Q + δ =

Fi(x, fi(Q) + z) ≥ Fi(g(f−i(Q), θi), fi(Q) + z) ≥ Fi(g(f−i(Q + δ), θi), fi(Q) + z) = g(f−i(Q + δ), fi(Q) + z). A
contradiction. 2

The previous lemma implies that we from now on can focus on the greatest selection from R, r(z) = supz∈S R(z)
(we risk confusion by denoting this greatest selection by r although it may of course differ from the original
order-reversing selection from the original R). Letting r(h(Q)) = (ri(hi(Q, si))i∈I , it follows in particular that
the maximal order-reversing selection f , will be a selection from b(Q) = {s ∈ S : s = r(h(Q, s))} ⊆ B(Q) =
{s ∈ S : s ∈ R(h(Q, s))}.

Lemma 9 If for Q1 ≤ Q2 there exists s1 ∈ b(Q1) and s2 ∈ b(Q2) with s2 ≤S s1, then for all Q ∈ [Q1, Q2]∩X
the set b(Q)∩ [s2, s1] is a non-empty complete lattice. Consequently if g(s1) ≤ Q1 then g(sup{b(Q)∩ [s2, s1]}) ≤
Q for all Q ∈ [Q1, Q2].

Proof: Since h is order-reversing in s and order-preserving in Q, rQ(s) ≡ r(h(Q, s)) is order-reversing in Q
and order-preserving in s. It follows that for Q ∈ [Q1, Q2]: ri(hi(Q, s1

i )) ≤i s1
i and ri(hi(Q, s2

i )) ≥i s2
i for all i

⇒ rQ : [s2, s1] → [s2, s1]. Since [s2, s1] = {s ∈ S : s2 ≤S s ≤S s1} is a complete lattice, the lemma’s conclusion
now follows from Tarski’s fixed point theorem after observing that b(Q)∩[s2, s1] = {s ∈ [s2, s1] : s = r(h(Q, s))}.
The mentioned consequence is obvious. 2

In the remainder we fix a maximal subset P ∗ in accordance with lemma 5. By (P4), there is defined upon P ∗ a
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maximal order-reversing function f : P ∗ → S (f = (fi)i∈I) which to each Q ∈ P ∗ associates a joint backward
best-reply f(Q) ∈ H(Q) ⊆ S. If g(f(c0)) = c0 for some c0 ∈ P ∗, this implies the conclusion of the theorem by
lemma 3. Thus we must study the situation where g(f(c0)) < c0 and shall do so from now on.

The next lemma is a direct adaption of the main argument of Novshek (1985) and Kukushkin (1994).

Lemma 10 Pick c0 ∈ ∂P ∗. For all i ∈ I and εi ∈ Ωi ≡ {ε >i 0 : g(f−i(c0), fi(c0) + ε) ≤ c0}, it holds that:

(19) ri(hi(c0, fi(c0) + εi)) <i εi + fi(c0)

Proof: By contradiction. Assume that ≥ holds for some i ∈ I and some ε ∈ Ωi. It is clear that equality cannot
hold since this would mean that ε+fi(c0) ∈ Bi(c0). Define wi = hi(c0, fi(c0)+ε) (so c0 = Fi(wi, fi(c0)+ε)) and
ci = Fi(wi, ri(wi)) = Fi(hi(c0, fi(c0) + ε), ri(wi)) ≥ Fi(hi(c0, fi(c0) + ε), fi(c0) + ε) = c0. Here the last equality
holds because hi(y, z) = x ⇔ Fi(x, z) = y. We now show that ((fj(ci))j 6=i, ri(wi)) ∈ M(ci). Firstly, ri(wi) ∈
Bi(ci) since ri(wi) = ri(hi(c0, fi(c0) + ε)) = ri(hi(ci, ri(wi))).40 Secondly, g((fj(ci))j 6=i, ri(wi)) ≤ ci, because
g(f−i(c0), fi(c0) + ε) ≤ c0 ⇔ Fi(g(f−i(c0), θi), fi(c0) + ε) ≤ Fi(wi, fi(c0) + ε) = Fi(hi(ci, ri(wi)), fi(c0) + ε)
implying that g(f−i(c0), θi) ≤ hi(ci, ri(wi)) because Fi is strictly increasing in its first coordinate. But (again
because Fi is strictly increasing in its first coordinate), this implies the conclusion: Let hi(ci, ri(wi)) = x then
ci = Fi(x, ri(wi)) ≥ Fi(g(f−i(c0), θi), ri(wi)) = g(f−i(c0), ri(wi)). But we also have that g(f−i(c0), ri(wi)) >
g(f(ci)), because ri(wi) >i fi(c0) ≥i fi(ci). Here the second inequality is true because ci ≥ c0 and fi is order-
reversing. This contradicts the fact that f : [c0, Q

∗] → S is maximal order-reversing. Indeed, f∗ : [ci, Q
∗] → S,

where f∗(ci) = ((fj(ci))j 6=i, ri(wi)) and f∗(c) = f(c) otherwise, is order-reversing and strictly larger than f at
ci. 2

Lemma 11 Let c ∈ P ∗ and assume that g(f(c)) � c. Then for every i ∈ I and every n ∈ {1, . . . , N} there
exists δi ≥ 0 with g(f−i(c), fi(c) + δi) ≤ c, such that ri(hi(c, fi(c) + δi)) ≤ δi + fi(c) with strict inequality in
coordinate n.

Proof: The result is automatic if N = 1 and straight-forward for N = 2. To save space, we shall prove
the claim for N = 3 and leave the extension to N > 3 (which gets very lenghty but adds nothing new) to the
interested reader. Define φi(ε) = ri(hi(c, fi(c)+ε)−fi(c). For every ε = (ε1, ε2, ε3) ∈ Ωi we have by the previous
lemma some n1 such that φn1

i (ε) < εn1 . Use Tarski’s fixed point theorem to get εn1 > εn1
1 ≥ φn1

i (0n1 , ε−n1)
such that φn1

i (εn1
1 , ε−n1) = εn1

1 . Since (εn1
1 , ε−n1) ∈ Ωi, we can apply lemma 10 once more, yielding n2 6= n1

such that φn2
i (εn1

1 , ε−n1) < εn2 . Fixing εn3 observe that

φn1,n2
i (·, ·, εn3) : [(0, 0), (εn1

1 , εn2)] → [(0, 0), (εn1
1 , εn2)]

Thus by Tarski’s fixed point theorem, there is a maximal fixed point (εn1
2 , εn2

2 ) such that φn1,n2
i (εn1

2 , εn2
2 , εn3) =

(εn1
2 , εn2

2 ). Lemma 10 implies that φn3
i (εn1

2 , εn2
2 , εn3) < εn3 . This immediately implies the conclusion of the

lemma for n3. Additionally, if εn1
2 > 0 (resp., εn2

2 > 0) then we can fix this εn1
2 and apply Tarski’s fixed point

theorem on the remaining two coordinates, the set {−n1}, and so get the conclusion of the lemma in n1 (resp.,
n2). So the remaining situations to be considered is when εn1

2 = 0 and/or εn2
2 = 0. Imagine that εn1

2 = 0 and
consider φn2

i (0, εn2
2 , εn3) = εn2

2 . Now raise εn2
2 slightly to εn2

3 > εn2
2 . By left-continuity of r (r is a greatest

selection from an order-reversing u.h.c. correspondence, cf. the remarks following lemma 7), we still have:
φn3

i (0, εn2
3 , εn3) < εn3 . We must have φn2

i (0, εn2
3 , εn3) < εn2

3 since if not, we get the following contradiction:
Assuming φn2

i (0, εn2
3 , εn3) ≥ εn2

3 ,

φn1,n2
i (·, ·, εn3) : [(0, εn2

3 ), (εn1
1 , εn2)] → [(0, εn2

3 ), (εn1
1 , εn2)] ,

so (0, εn2
2 ) cannot be the maximal fixed point in the second step above. By left-continuity, we can now raise εn1

2

slightly from 0 to εn1
3 > 0 and will still have strict inequalities in n2 and n3. But then we can extend, since we

simply iterate on n2 and n3 holding εn1
3 > 0 fixed which produces (εn2

3 , εn3
3 ) such that φn1

i (εn1
3 , εn2

3 , εn3
3 ) < εn1

3

while equality holds for n2 and n3. Next imagine that εn2
2 = 0 and consider φn1

i (εn1
2 , 0, εn3) = εn1

2 . Now raise εn1
2

40Here use: hi(Fi(wi, ri(wi)), ri(wi)) = wi, which is true because hi(Q, ri(wi)) = wi ⇔ hi(Q, ri(wi)) = wi.
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slightly to εn1
3 > εn1

2 . By left-continuity, we still have: φn3
i (εn1

3 , 0, εn3) < εn3 . If we have φn1
i (εn1

3 , 0, εn3) < εn1
3

we can proceed as above; so assume not, φn1
i (εn1

3 , 0, εn3) ≥ εn1
3 . It holds that,

φn1,n2
i (·, ·, εn3) : [(εn1

3 , 0), (εn1
1 , εn2)] → [(εn1

3 , 0), (εn1
1 , εn2)]

Again this leads to a contradiction - but this time provided that εn1
3 ≤ εn1

1 which can be ensured iff εn1
2 < εn1

1 (we
always have weak inequality). But εn1

2 = εn1
1 implies that φn1

i (εn1
1 , 0, εn3) = φn1

i (εn1
1 , εn2 , εn3) (φn1

i is constant
in the second term). If so, we can instead raise εn2

2 = 0 above zero, and will have equality in the coordinate n1

while as before inequality holds in n3. Consequently, we can iterate on {−n2} and so extend in coordinate n2. 2

The first important conclusion one is able to draw from lemma 11 is that when c ∈ ∂P ∗ it cannot be the
case that g(f(c)) � c. Consequently the proof is complete already here in the one-dimensional case. Specifi-
cally we will be needing the following way of stating this:41

Lemma 12 Define upon P ∗ ∈ P∗, a function F : P ∗ → RM
+ by the assignment,

(20) F (Q) = Q− g(f(Q))

where f is the maximal order-reversing selection associated with P ∗. Then F (∂P ∗) ⊆ ∂RM
+ , i.e., F maps the

boundary of P ∗ to the boundary of RM
+ .

Proof: By contradiction. Use lemma 10 to pick εi ∈ Ωi for every i and define δi = fi(c0)+εi−ri(hi(c0, fi(c0)+
εi)) >i 0. Since ri(hi(c0, ·)) is order-preserving, εi − δi >i 0. By lemma 11, we can find (εi)i∈I and a (fixed)
n ∈ {1, . . . , N} such that δn

i > 0 for all i. Next, for every i pick δ̃i > 0 such that hi(c0, fi(c0) + εi) =
hi(c0 − δ̃i, fi(c0) + εi − δi) (possible by continuity). By definition of Bi then fi(c0) + εi − δi ∈ Bi(c0 − δ̃i). It
is clear that in this construction, δ

M(m)
i > 0 ⇒ δ̃m

i > 0, and so δ̃n
i > 0 for all i. Now lemma 9 comes into

play. This lemma together with the previous observation imply that for each i and every ρ ∈ [0, δ̃i], there exists
si ∈ Bi(c− ρ) with fi(c) ≤ si ≤ fi(c0) + εi − δi. Taking ρ̂ = (inf{δ̃n

1 , . . . , δ̃n
I }, 0−n), then yields s = (s1, . . . , sI)

s.t. s ∈ B(c− ρ̂) and fi(c) ≤ si ≤ fi(c0)+εi−δi for all i. It follows that g(s1, . . . , sI) ≤ g((fi(c0)+εi−δi)i∈I).
Picking (ε1, . . . , εI) such that g((fi(c0) + εi)i∈I) ≤ c0, this implies that the maximal chain C ⊆ P ∗ whose
infimum is c ∈ ∂P ∗ can be extended to [c− ρ̂, c] ∪ C. This contradicts the maximality of P ∗.42 2

Note that g(f(lim inf Qn)) ≥ lim sup g(f(Qn)) ⇔ −g(f(lim inf Qn)) ≤ lim inf −g(f(Qn)), and so, because
lim inf an + lim inf bn ≤ lim inf[an + bn] (which always holds when the terms involved are well-defined and the
order is closed):

(21) F (lim inf Qn) ≤ lim inf F (Qn)

By (17), (21) consequently holds for any interior sequence (Qn)n in P ∗. The next lemma extends this statement
to all of P ∗. We shall omit the proof (it is available from the author upon request); because it forces us to intro-
duce a considerable amount of extra mathematics (Painleve-Kuratowski limit, nets, Cantor diagonalization).

Lemma 13 (21) holds for any sequence (Qn)n in P ∗.

For a sequence (xn)n, say that x is an L-limit, written x ≡L limn xn provided that lim inf xn ≥X x. From this
define a family of subsets:43

(22) O(X) = {U ⊆ X : whenever x ≡L limn xn and x ∈ U , then eventually xn ∈ U}

The family O(X) is a topology, more precisely it is the topology generated by the convergence classes con-
sisting of those pairs ((xn)n, x) for which x ≡L limn xn (see Kelley (1955), chapter 2, especially theorem 9).

41Note that the positive cone of X is here taken to be the positive cone of the usual order. This is possible by the
remarks preceding lemma 10.

42Note that this extension actually requires us to repeat the above argument for all points d ∈ [c− ρ̂, c]. Clearly this
poses no problem since lemma 9 applies to the entire interval [c − ρ̂, c]. Also note that it is indeed possible to pick
(ε1, . . . , εI) “sufficiently small” as described (this is easily seen from the proof of lemma 11).

43A sequence (xn)n is eventually in a set U if there is some k ∈ N such that n ≥ k implies xn ∈ U .
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The topology O(X) is essentially the Scott-topology (Gierz et al. (2003)), although “tweaked” so as to work
well on the boundary ∂P ∗ also (O(X) and the Scott-topology agree on the interior of P ∗). Notice the very
close relationship with lower semi-continuity (with lower semi-continuity one would replace lim inf Qn with a
limit taken with respect to the usual topology; something we shall encounter shortly). If a sequence (xn)n

converges to x in the usual topology, it is clearly the case that x is an L-limit of (xn)n (which is to say that
O(X) is coarser than the usual topology). On the other hand (X,O(X)), while being T1 is not Hausdorff since
L-limits are far from being unique. Comparing with the statement in lemma 13, it is seen that F : P ∗ → RM

+ is
continuous with respect to the topologies O(P ∗) and O(RM

+ ) (subsets are as always endowed with the induced
topology). We shall say simply that F is continuous from now on.

Let Sn denote the unit sphere in Rn+1 (so S1 is the unit circle, S2 the unit-sphere in R3, and so forth)
endowed with the usual topology. Two maps g1, g2 : Sn → ∂P ∗ are homotopic if there exists a continuous
map H : Sn × [0, 1] → ∂P ∗ (the homotopy) such that H(z, 0) = g1(z) and H(z, 1) = g2(z) for all z ∈ Sn.
We write in this case g1

∼= g2. For a fixed base point Q0 ∈ ∂P ∗, a map g : Sn → ∂P ∗ is nullhomotopic if g
and the constant map 1 : Sn → {Q0} are homotopic. The n’th homotopy group is denoted πn(∂P ∗) and this
is trivial if it consists only of the single equivalence class [1]. A set is n-connected if πm(∂P ∗) is trivial for
all m ≤ n (here, following the standard conventions, −1-connected means non-empty, and 0-connected means
path-connected). By our assumptions, X = g(S) is a convex, compact set, and it is easily seen that ∂P ∗ is
therefore contractible (in fact, it is an absolute retract of X). This then implies that these sets are n-connected
for all n.

Let σm = {x ∈ F (∂P ∗) : xm = 0}. From now on we refer to these M subsets of RM
+ as the components. By

lemma 12, F : ∂P ∗ → ∪M
m=1σ

m. Let Q∗ = (Q∗,1, . . . , Q∗,M ) ∈ X. Assume w.l.g. that ∂P ∗ has full (covering)
dimension, i.e., dimension equal to M − 1 being the lower boundary of an M -dimensional Euclidean manifold
(if the dimension is lower, simply use the following argument in the lower-dimensional case). Since P ∗ is an
upper set in a product set X, there will for any m ∈ {1, . . . ,M} exist elements Q̂m = (Qm, Q∗,−m) ∈ ∂P ∗.

Lemma 14 (i) For all m, F (Q̂m) ∈ σm. (ii) For any two m1 6= m2, there exists a continuous map r : [0, 1] →
σm1 ∪ σm2 with r(0) = F (Q̂m1) and r(1) = F (Q̂m2).

Proof: (i) If Fm(Qm, Q∗,−m) < 0 were to hold, we could use the fact that F j(Q̃m, Q∗,−m) ≤ 0 for all
j 6= m and all Q̃m ≤ Qm (remember that Q∗ is an upper bound !) in conjunction with the argument
used in lemma 11 to obtain an extension and contradict the maximality of P ∗. (ii) Given m1 and m2

let A = {Q ∈ ∂P ∗ : Qj = Q∗,j for all j 6∈ {m1,m2}} which is a path-connected subset of ∂P ∗. Clearly,
Q̂m1 , Q̂m2 ∈ A. For Q ∈ A, F (Q) ∈ σm1 ∪ σm2 for if not the argument from (i) would apply and lead to a
contradiction. The conclusion is now trivial (simply choose a path in A connecting Q̂m1 with Q̂m2 and let r
be the composition with F ).44 2

Pick s1, . . . , sM ∈ S1 clockwise ordered and with equal distance between subsequent elements. Fix s1 as
the basepoint. Now let g : {s1, . . . , sM} → ∂P ∗ be such that g(sm) = Q̂m for all m. By lemma 14, we can
extend g to the whole unit simplex in such a way that the extension is continuous and g(s) ∈ σm ∪ σm+1

whenever s ∈ [sm, sm+1]S1 (here M + 1 := 1). The next observation is the key to our proof. It says intuitively
that although F ◦ g may well “jump” it cannot jump “between” any two different components. Because O(P ∗)
is coarser than the original topology, we have therefore that if g : S1 → ∂P ∗ is any continuous function (where
both sets are given the original topology), then the composition F ◦ g : S1 → RM

+ is continuous. But the same
statement is valid if ∂P ∗ is endowed with the topology O(∂P ∗) (which weakens the continuity requirement on
g). It is in fact this stronger statement which is made here (and consequently the conclusion applies if g is
merely lower semi-continuous):

Lemma 15 Let sn → s be any convergent sequence which is such that for some m, F (g(sn)) ∈ σm all n.
Then F (g(s)) ∈ σm.

44For every m ∈ {1, . . . , M} let ∂P ∗
|Q∗,m denote the section {Q ∈ ∂P ∗ : Qm = Q∗,m}. If Q ∈ ∂P ∗

|Q∗,m , it cannot be

true that F m(Q) = 0 while F j(Q) > 0 for all j 6= m (the reason is as before: If F m(Q) = 0 then F m(Q̃) = 0 for all
Q̃ ≤ Q and so we can extend and contradict the maximality of P ∗).
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Proof: By continuity of g and F , g(s) ≤ lim inf g(sn) and lim inf F (g(sn)) ≥ F (lim inf g(sn)). Because F is
order-preserving, lim inf F (g(sn)) ≥X F (g(s)). Since Fm(g(sn)) = 0 for all n,
lim inf F (g(sn)))m = 0 implying that Fm(g(s)) = 0. 2

As mentioned, lemma 15 says intuitively that F ◦ g cannot jump between any two components σm1 6= σm2 ,
so whenever a loop moves between such components, it passes through a point in their intersection. More
formally, for any continuous map r : [0, 1] → F (∂P ∗) ∩ (σm1 ∪ σm2) with r(0) ∈ σm1 , r(1) ∈ σm2 there must
be t ∈ [0, 1] with r(t) ∈ σm1 ∩ σm2 . No path can ever jump across the origin 0 ∈ RM

+ because this is the
infimum of ∪M

m=1σ
m and any jump is a jump down in the sense of (21). In the three-dimensional case, the

argument is now fairly simple: The loop F ◦ g : S1 → ∪3
m=1σ

m runs through all components. No matter how
the homotopy H : S1 × [0, 1] → ∪3

m=1σ
m deforms this loop to the basepoint F ◦ g(s1), it will for any t still

run through all σm’s unless it has beforehand (for some t′ < t) been drawn through 0 (and, in particular, the
loop cannot change direction, i.e., there are no singularities). Indeed, by lemma 15 it is not allowed to jump
between different components. But since the loop does deform continuously to its basepoint F (g(s1)) (where
s1 is the basepoint in S1); in the limit (when t → 1 in the homotopy); any sequence in S1 converging to s1 will
induce a sequence in F (∂P ∗) whose liminf is greater than or equal to F (g(s1)). But if the loop passes through
every σm for all t < 1; this is impossible unless F (s1) = 0. Indeed, from every σm could then be picked a
sequence whose liminf must be greater than or equal to F (s1) and by the definition of σm it is clear that then
F (s1) = 0 (each σm forces one coordinate to 0).

In the general case (M > 3), we have {s1, . . . , sM} ⊂ SM−2 and an assignment g : {s1, . . . , sM} → ∂P ∗

such that g ◦ F (sm) ∈ σm for all m. For any two points sm1 and sm2 we can find a continuous function
r : [0, 1]M−2 → σm1 ∪ σm2 . It is still true that no path can jump between components, so if we restrict r to a
path, w : [0, 1] → σm1 ∪σm2 with w(0) ∈ σm1 and w(1) ∈ σm2 , there will exist t ∈ [0, 1] with w(t) ∈ σm1 ∩σm2 .
As a consequence, we can attach the“cells” [0, 1]M−2 at their points of intersection (which is always non-empty)
and we then obtain a continuous extension of g, g : SM−2 → ∂P ∗. By composition, F ◦ g : SM−2 → ∪M

m=1σ
m

is continuous. That 0 ∈ F (∂P ∗) is now proved in much the same way as above: Deforming F ◦ g(SM−2) to a
point via the homotopy H(s, t) it will for any t still run through all components or it must be drawn through
0. Assuming this, we then look as the limit (t → 1 so sequences in SM−2 converge to the basepoint s1) and
conclude that F (g(s1)) = 0 by a repetition of the argument at the end of the previous paragraph.
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