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1 Distributions

1.1 General

1.1.1 Invertible transformation of a random variable

Consider as in (T1.1) in the Technical Appendices at symmys.com > Book >
Downloads the following transformation of the generic random variable X:

X 7→ Y ≡ g (X) , (1)

where g is an increasing and thus invertible function.
Prove the following formulas:

FY (y) = FX
¡
g−1 (y)

¢
(2)

fY (y) =
fX
¡
g−1 (y)

¢
g0 (g−1 (y))

. (3)

QY (p) = g (QX (p)) (4)

See Section 1.1 in the Technical Appendices. In particular, for the cdf, by
the definition of the cumulative distribution function FY we have:

FY (y) ≡ P {Y ≤ y} = P {g (X) ≤ y}
= P

©
X ≤ g−1 (y)

ª
(5)

= FX
¡
g−1 (y)

¢
.

For the pdf, by derivation of both sides the above result we obtain:

fY (y) =
fX
¡
g−1 (y)

¢
g0 (g−1 (y))

(6)

For the quantile, as in the Technical Appendices consider the following series of
identities:

FY (g (QX (p))) = P {Y ≤ g (QX (p))} = P {X ≤ QX (p)} = p, (7)

By applying the definition of the quantile QY to the above terms we obtain:

QY (p) = g (QX (p)) , (8)

1.1.2 Affine transformation of a random variable

Consider as in (T1.12) in the Technical Appendices the following positive affine
transformation of the generic random variable X:

X 7→ Y ≡ g (X) ≡ m+ sX, (9)
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where s > 0 and m is a generic constant.
Prove the following formulas:

fY (y) =
1

s
fX

µ
y −m

s

¶
(10)

FY (y) = FX

µ
y −m

s

¶
(11)

QY (p) = m+ sQX (p) (12)

φY (ω) = eiωmφX (sω) (13)

See Section 1.2 in the Technical Appendices.

1.1.3 Sum of random variables: characteristic function

Consider the random variable defined in distribution as

X
d≡ Y + Z, (14)

where Y and Z are independent.
Compute the characteristic function φX of X from the characteristic func-

tions φY of Y and φZ of Z.

φX (ω) ≡ E
©
eiωX

ª
= E

n
eiω(Y+Z)

o
= E

©
eiωY eiωZ

ª
(15)

= E
©
eiωY

ª
E
©
eiωZ

ª
= φY (ω)φZ (ω)

1.1.4 Sum of random variables: simulations

Consider a Student t-distributed random variable

X ∼ St
¡
ν, µ, σ2

¢
, (16)

where ν ≡ 8, µ ≡ 0 and σ2 ≡ 0.1. Consider an independent lognormal random
variable

Y ∼ LogN
¡
µ, σ2

¢
, (17)

where µ ≡ 0.1 and σ2 ≡ 0.2. Consider the random variable defined as

Z ≡ X + Y . (18)

Generate the script S_NonAnalytical in which you perform the following op-
erations.
Generate a large (≈ 10, 000 observations) sample X from (16), a sample Y of

equal size from (17), sum them term by term (do not use loops) and obtain a
large sample Z from (18).
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Plot the sample Z. Do not join the observations (use the plot option ’.’ as
in a scatterplot).
Plot the histogram of Z. Use hist and choose the number of bins appropri-

ately.
Plot the empirical cdf of Z. Use [f,z]=ecdf(Z) and plot(z,f).
Plot the empirical quantile of Z. Use prctile.

See the script S_NonAnalytical.

1.1.5 Fourier transformation

Prove that the Fourier transformation (B.34) in Meucci (2005) is a linear oper-
ator, i.e. it satisfies (B.24).

From the definition (B.34)

F [u+ v] (y) ≡
Z
RN

eiy
0x (u (x) + v (x)) dx (19)

=

Z
RN

eiy
0xu (x) dx+

Z
RN

eiy
0xv (x) dx

≡ F [u] (y) + F [v] (y)

Also, from the definition (B.34)

F [αv] ≡
Z
RN

eiy
0x (αv (x)) dx (20)

= α

Z
RN

eiy
0xv (x) dx ≡ αF [v]

Therefore (B.24) is satisfied.

1.1.6 Convolution

Prove that the convolution (B.43) in Meucci (2005) of two probability density
functions is a probability density function.

Consider probability density functions f and h, i.e. two functions that satisfy
(2.5)-(2.6). Consider their convolution g ≡ f ∗ h, which from the definition
(B.43) reads explicitly:

g (x) ≡
Z
RN

f (y)h (x− y) dy. (21)
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Property (2.5) is satisfied because f and h are non-negative. As for (2.6)Z
RN

g (x) dx ≡
Z
RN

µZ
RN

f (y)h (x− y) dy
¶
dx (22)

=

Z
RN

f (y)

µZ
RN

h (x− y) dx
¶
dy

=

Z
RN

f (y) dy = 1,

where in the second to last row we used a change of variables x→ z ≡ x− y.

1.1.7 Raw moments to central moments

Consider the raw moments (1.47)

eµ(n)X ≡ E{Xn}, n = 1, 2, . . . ; (23)

and the central moments (1.48)

µ
(1)
X ≡ µX ≡ eµ(1)X ; µ

(n)
X ≡ E{(X − µX)

n}, n = 2, 3, . . . . (24)

Create a function Raw2Central that maps the first n raw moments into the first
n central moments.

See function Raw2Central.
For n > 1, from the definition of central moment (24) and the binomial

expansion we obtain

µ
(n)
X ≡ E{(X − µX)

n}

= E

(
n−1X
k=0

(−1)n−k µn−kX Xk +Xn

)
(25)

=
n−1X
k=0

(−1)n−k µn−kX E
©
Xk
ª
+E {Xn}

=
n−1X
k=0

(−1)n−k µn−kX eµ(k)X + eµ(n)X .

1.1.8 Central moments to raw moments

Consider the raw moments (1.47) in Meucci (2005)

eµ(n)X ≡ E{Xn}, n = 1, 2, . . . ; (26)
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and the central moments (1.48) in Meucci (2005)

µ
(1)
X ≡ µX ≡ eµ(1)X ; µ

(n)
X ≡ E{(X − µX)

n}, n = 2, 3, . . . . (27)

Create a function Central2Raw that maps the first n central moments into the
first n raw moments.

See function Central2Raw.
From (25) we obtain

eµ(n)X = µ
(n)
X +

n−1X
k=0

(−1)n−k+1 µn−kX eµ(k)X .

This is a recursive formula that we initiate as eµ(1)X = µ
(1)
X , which follows from

(27).

1.2 Parametric

1.2.1 Normal

Consider as in (1.66) in Meucci (2005) a normal random variable

X ∼ N
¡
µ, σ2

¢
. (28)

Generate the script S_NormalSample in which you perform the following oper-
ations. Compute µ and σ2 such that E {X} ≡ 3 and Var {X} ≡ 5.

From (1.71) E {X} = µ and from (1.72) Var {X} = σ2. Notice that the
MATLAB built-in functions take µ and

√
σ2 as inputs.

Generate a large (≈ 10, 000 observations) sample X from this distribution
using normrnd.
In Figure 1, plot the sample. Do not join the observations (use the plot

option ’.’ as in a scatterplot).
In Figure 2, plot the histogram. Use hist and choose the number of bins

appropriately.
In Figure 3, plot the empirical cdf. Use [f,x]=ecdf(X) and plot(x,f).
Superimpose (use hold on) the exact cdf as computed by normcdf. Use a

different color.
In Figure 4, plot the empirical quantile. Use prctile.
Superimpose (use hold on) the exact quantile as computed by norminv. Use

a different color.

See the script S_NormalSample.
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1.2.2 Normal moments

Compute the central moments

µ
(n)
X ≡ E {(X − E {X})n} (29)

of a normal distribution
X ∼ N

¡
µ, σ2

¢
. (30)

For a generic random variable X, the moment generating function

MX (z) ≡
Z

ezxfX (x) dx (31)

is such that DnMX (0) = eµ(n)X , where D is the derivation operator and

eµ(n)X ≡ E {Xn} (32)

is the non-central moment. This follows from explicitly applying D on both
sides of (31). The moment generating function is the characteristic function
φX (ω) defined in (1.12) in Meucci (2005) evaluated at ω ≡ z/i

MX (z) = φX (z/i) . (33)

First we focus on the non-central moments of the standard normal distrib-
ution

Y ∼ N(0, 1) . (34)

From (1.69) in Meucci (2005) and (33) we obtain MY (z) ≡ ez
2/2. Computing

the derivatives

D0MY (z) = ez
2/2

D1MY (z) = ze
1
2 z

2

D2MY (z) = e
1
2z

2

+ z2e
1
2z

2

D3MY (z) = z3e
1
2z

2

+ 3ze
1
2 z

2

(35)

D4MY (z) = 3e
1
2z

2

+ 6z2e
1
2z

2

+ z4e
1
2z

2

D5MY (z) = 10z3e
1
2z

2

+ z5e
1
2z

2

+ 15ze
1
2 z

2

D6MY (z) = 15e
1
2z

2

+ 45z2e
1
2z

2

+ 15z4e
1
2z

2

+ z6e
1
2z

2

...

and evaluating in zero yields the result

eµ(n)Y =

½
0 if n is odd
(n− 1)!! if n is even,

(36)

where n!! ≡ 1× 3× 5× · · · × n.
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Now we notice that
µ
(n)
X = eµ(n)X−µ (37)

which follows from (29), (32) and (1.71) in Meucci (2005). Furthermore

eµ(n)X−µ = σneµ(n)Y (38)

because X − µ
d
= σY , as follows form (2.163) in Meucci (2005) applied to the

univariate case. Therefore

µ
(n)
X =

½
0 if n is odd
σn (n− 1)!! if n is even

(39)

1.2.3 Normal multivariate with matching moments

This exercise is discussed in greater depth and placed into a broader context in
Meucci (2009c), freely available online at ssrn.com, which we follow below.
Consider as in (2.155) in Meucci (2005) a mutlivariate normal market

X ∼ N(µ,Σ) , (40)

where µ and Σ are arbitrary.
Generate a large number of scenarios {xj}j=1,...,J from the distribution (40)

in such a way that the sample mean and covariance

bµ ≡ 1

J

JX
j=1

xj , bΣ ≡ 1

J

JX
j=1

(xj − µ) (xj − µ)0 (41)

satisfy bµ ≡ µ bΣ ≡ Σ. (42)

Hint. If you need to solve a Riccati equation

Σ ≡ BbΣB, B ≡ B0. (43)

you can follow Petkov, Christov, and Konstantinov (1991). First define the
Hamiltonian matrix

H ≡
µ

0 −bSy
−S 0

¶
. (44)

Next perform its Schur decomposition

H ≡ UTU0, (45)

where UU0 ≡ I and T is upper triangular with the eigenvalues of H on the
diagonal sorted in such a way that the first N have negative real part and the
remaining N have positive real part; the terms in this decomposition are similar
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in nature to principal components and are computed by MATLAB. Then the
solution of the Riccati equation (43) reads

B ≡ ULLU
−1
UL, (46)

where UUL is the upper left N ×N block of U and ULL is the lower left N ×N
block of U.

population moments
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sample moments

standard simulation proposed approach

Figure 1: Sample and population moments coincide our approach

See the function MvnRnd, which takes the same inputs and yields the same
output as the built-in MATLAB function mvnrnd.
First produce an auxiliary set of scenarios

{eyj}j=1,..., J2 (47)

from the distribution N(0,Σ). Then complement these scenarios with their
opposite eyj ≡ ½ eyj if 1 ≤ j ≤ J/2

−eyj− J
2

if J/2 + 1 ≤ j ≤ J . (48)

These antithetic variables still represent the distribution N(0,Σ), but they are
more efficient they satisfy the zero-mean condition.
Next apply a linear transformation to the scenarios eyj , which again preserves

normality:
yj ≡ Beyj, j = 1, . . . , J . (49)

For any choice of the invertible matrix B, the sample mean is null. To determine
B we impose that the sample covariance matches the desired covariance. Using
the affine equivariance of the sample covariance which follows from (4.42), (4.36),
(2.67) and (2.64) in Meucci (2005), we obtain the matrix Riccati equation (43).
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With the solution (46) we can perform the affine transformation (49) and
finally generate the desired scenarios

xj ≡ µ+ yj , j = 1, . . . , J , (50)

which satisfy (42), see Figure 1, where as in Meucci (2005) we represent the first
two moments of a distribution in terms of an ellipsoid.

1.2.4 Student t

Generate the script S_StudentTSample in which you perform the following op-
erations.
Consider a Student t random variable

X ∼ St
¡
ν, µ, σ2

¢
. (51)

Knowing that σ2 ≡ 6, compute ν and µ such that E {X} ≡ 2 and Var {X} ≡
7. (Note: there is a typo in (1.90) in Meucci (2005). Check the "Errata" at
symmys.com > Book > Downloads).
Generate a sample X_a of T ≡ 10, 000 observations from (51) using the

built-in t number generator.
Generate a sample X_b of T ≡ 10, 000 observations from (51) using the

normal number generator, the chi-square number generator and the following
result:

X
d
= µ+

Yp
Z/ν

, (52)

where Y and Z are independent variables distributed as follows:

Y ∼ N
¡
0, σ2

¢
, Z ∼ χ2ν . (53)

Generate a sample X_c of T ≡ 10, 000 observations from (51) using the
uniform generator number, tinv and (2.27) in Meucci (2005).
In a separate figure, subplot the histogram of the simulations of X_a,

subplot the histogram of the simulations of X_b and subplot the histogram of
the simulations of X_c.
Compute the empirical quantile functions of the three simulations corre-

sponding to the confidence grid

G ≡ {0.01, 0.02, . . . , 0.99} (54)

In a separate figure superimpose the plots of the above empirical quantiles,
which should coincide. Use different colors.

See the script S_StudentTSample.
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1.2.5 Lognormal

Consider as in (1.94) in Meucci (2005) a lognormal random variable

X ∼ LogN
¡
µ, σ2

¢
. (55)

Generate the script S_LognormalSample in which you perform the following
operations.
Compute µ and σ2 such that E {X} ≡ 3 and Var {X} ≡ 5.

From (1.98) and (1.99) we need to solve for µ and σ2 the following system:

E = eµ+
σ2

2 (56)

V = e2µ+σ
2
³
eσ

2 − 1
´

(57)

or

2 ln (E) = 2µ+ σ2 (58)

ln (V ) = 2µ+ σ2 + ln
³
eσ

2 − 1
´

(59)

Therefore

ln

µ
V

E2

¶
= ln

³
eσ

2 − 1
´

(60)

or

σ2 = ln

µ
1 +

V

E2

¶
. (61)

From (58) we then obtain:

µ = ln (E)− 1
2
ln

µ
1 +

V

E2

¶
. (62)

Notice that the MATLAB built-in functions take µ and
√
σ2 as inputs.

Generate a large (≈ 10, 000 observations) sample X from this distribution
using lognrnd.
In Figure 1, plot the sample. Do not join the observations (use the plot

option ’.’ as in a scatterplot).
In Figure 2, plot the histogram. Use hist and choose the number of bins

appropriately.
In Figure 3, plot the empirical cdf. Use [f,x]=ecdf(X) and plot(x,f).
Superimpose (use hold on) the exact cdf as computed by logncdf. Use a

different color.
In Figure 4, plot the empirical quantile. Use prctile.
Superimpose (use hold on) the exact quantile as computed by logninv. Use

a different color.
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See the script S_LognormalSample.

1.2.6 Lognormal moments

Consider as in (1.94) in Meucci (2005) a lognormal random variable

X ∼ LogN
¡
µ, σ2

¢
. (63)

Compute the raw moments
µn ≡ E {Xn} (64)

for all n = 1, 2, . . .

From (1.94) in Meucci (2005)

Xn d
= enY , (65)

where
Y ∼ N

¡
µ, σ2

¢
. (66)

From (2.163) in Meucci (2005)

nY ∼ N
¡
nµ, n2σ2

¢
(67)

Therefore
Xn ∼ LogN

¡
nµ, n2σ2

¢
(68)

and the moments follow from (1.98) in Meucci (2005)

µn = enµ+n
2σ2/2 (69)

1.2.7 Gamma versus chi-square

Consider as in (1.107) in Meucci (2005) a gamma-distributed random variable

X ∼ Ga
¡
ν, µ, σ2

¢
. (70)

We recall that such variable is defined in distribution as follows

X
d≡ Y 2

1 + · · ·+ Y 2
ν , (71)

where
Y1

d≡ · · · d≡ Yν ∼ N
¡
µ, σ2

¢
(72)

are independent. For which values of ν, µ and σ2 does this distribution coincide
with the chi-square distribution with ten degrees of freedom?
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For ν ≡ 10, µ ≡ 0 and σ2 ≡ 1 we obtain X ∼ χ210, see (1.109) in the
textbook.

1.2.8 Wishart simulations

Consider the case N ≡ 2 of a Wishart distribution

W ∼W(ν,Σ) , (73)

where

Σ ≡
µ

σ21 ρσ1σ2
ρσ1σ2 σ22

¶
. (74)

Fix σ1 ≡ 1 and σ2 ≡ 1. Generate the script S_Wishartwhere you perform the
following operations.
Set your inputs ρ and ν.
Generate a sample of size J ≡ 10, 000 from W(ν,Σ) using the equivalent

stochastic representation (2.222) in Meucci (2005).
Positivity implies that D ≡ det (W) and T ≡ tr (W) are positive random

variables, see (2.236), (2.237) in Meucci (2005). Plot the histograms of the
realizations of D and T , which are approximations of the respective pdf’s, to
show that indeed these random variables are positive. Comment on whether
this is also true for ν ≡ 1.
Symmetry implies that a matrix is fully determined by the three non-redundant

entries (W11,W22,W12). Plot the 3-d scatter-plot of the realizations of W11 vs.
W12 vs. W22 to show the Wishart cloud. Notice that as the degrees of freedom
ν increases the clouds becomes less and less "wedgy". Eventually, it becomes a
normal ellipsoid, in accordance with the central limit theorem.
Plot the separate histograms of the realizations of W11, W12 and W22.
From (2.230) in Meucci (2005) the marginal distributions of the diagonal

elements of a Wishart matrix are gamma-distributed:

Wnn ∼ Ga (ν,Σnn) . (75)

Superimpose the rescaled pdf (1.110) of the marginals of W11 and W22 to
the respective histograms to show that histogram and gamma pdf coincide, see
(T1.43) in the technical appendices at www.symmys.com > Book > Downloads
Compute and show on the command window the sample means, sample

covariances, sample standard deviations and sample correlations.
Compute and show on the command window the respective analytical results

(2.227) and (2.228) in Meucci (2005), making sure that they coincide.

See the script S_Wishart.
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1.3 Special classes

1.3.1 Empirical

Derive expression (2.243) in Meucci (2005) for the characteristic function of the
empirical distribution.

φiT (ω) ≡ E
n
eiω

0X
o
=

Z
RN

eiω
0xfiT (x) dx

=

Z
RN

eiω
0x

"
1

T

TX
t=1

δ(xt) (x)

#
dx (76)

=
1

T

TX
t=1

Z
RN

eiω
0xδ(xt) (x) dx.

Using (B.17) we obtain:

φiT (ω)=
1

T

TX
t=1

eiω
0xt . (77)

1.3.2 Order statistics

Replicate the exercise S_OrderStatisticsPDFStudentTassuming that the i.i.d.
variables are lognormal instead of t-distributed.
Note. The figure generated by the script is 3-d: make sure to rotate the

figure in order to appreciate the third dimension as in Figure 2.19 in Meucci
(2005).

See the script S_OrderStatisticsPDFLogn.

1.3.3 Elliptical variables: radial-uniform representation

Generate a non-trivial 30× 30 symmetric and positive matrix Σ and a 30-dim
vector µ.
Generate J ≡ 10, 000 simulations from a 30-dimensional elliptical random

variable:
X ≡ µ+RAU. (78)

In this expression µ, R, A,U are the terms of the radial-uniform decomposition,
see (2.259) in Meucci (2005). In particular, set

R ∼ LogN
¡
ν, τ2

¢
, (79)

where ν ≡ 0.1 and τ2 ≡ 0.04.
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See the script S_EllipticalNDim.

1.3.4 Elliptical markets and portfolios

Consider an elliptical market

M ∼ El (µ,Σ, gN ) , (80)

Consider the objective Ψα ≡ α0M, where α is a generic vector of exposures.
Prove that

Ψα
d
= µα + σαZ, (81)

where
Z ∼ El (0, 1, g1) . (82)

Write the expression for µα and σα.

From (2.270) in Meucci (2005) we obtain

Ψα ∼ El
¡
µα, σ

2
α, g1

¢
, (83)

where

µα ≡ α0µ (84)

σ2α ≡ α0Σα (85)

From (2.258) in Meucci (2005)

Ψα
d
= µα + σαZ, (86)

where Z is spherically symmetrical and therefore

Z ∼ El (0, 1, g1) . (87)

2 Dependence

2.1 Correlation

2.1.1 Normal

Consider a bivariate normal random variable:µ
X1

X2

¶
∼ N

µµ
µ1
µ2

¶
,

µ
σ21 ρσ1σ2

ρσ1σ2 σ22

¶¶
. (88)

Fix µ1 ≡ 0, µ2 ≡ 0, σ1 ≡ 1, σ2 ≡ 1 and generate a script that:
plots the correlation between X1 and X2 as a function of ρ ∈ (−1, 1);
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uses eig. to plot as a function of ρ ∈ (−1, 1) the condition ratio of S, i.e.
the ratio of the smallest eigenvalue of S over its largest eigenvalue:

CR(S) ≡ λ2/λ1 (89)

Hint. See (4.115) in Meucci (2005). Remember the relationship between
eigenvalues and ellipsoid

See the script S_AnalyzeNormalCorrelation.

2.1.2 Lognormal

Consider an N -variate lognormal random variable:

X ∼ LogN (µ,Σ) . (90)

Generate a function LogNormalParam2Statistics that computesm ≡ E {X},
S ≡ Cov {X} and C ≡ Cor {X} as functions of the generic inputs µ,Σ.
Now focus on the bivariate case:µ

X1

X2

¶
∼ LogN

µµ
µ1
µ2

¶
,

µ
σ21 ρσ1σ2

ρσ1σ2 σ22

¶¶
. (91)

Fix µ1 ≡ 0, µ2 ≡ 0, σ1 ≡ 1, σ2 ≡ 1 and use the above function to generate
a script that:
uses LogNormalParam2Statistics to plot the correlation between X1 and

X2 as a function of ρ ∈ (−1, 1) (notice that the correlation will not approach
−1,why?);
uses eig. to plot as a function of ρ ∈ (−1, 1) the condition ratio of S, i.e.

the ratio of the smallest eigenvalue of S over its largest eigenvalue:

CR(S) ≡ λ2/λ1 (92)

Hint. See (4.115) in Meucci (2005). Remember the relationship between
eigenvalues and ellipsoid.

See the script S_AnalyzeLognormalCorrelation.

2.1.3 Independence versus no correlation

Consider a random vector X ≡ (X1 . . . ,XT )
0 that is t distributed

X ∼ St (ν,0T , IT ) , (93)

where 0T is a T -dimensional vector of zeros and IT is the T ×T identity matrix.
Compute the distribution of the marginals Xt, t = 1, . . . , T .
Compute the correlation among each pair of entries.
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Compute the distribution of

Y ≡
TX
t=1

Xt. (94)

Now consider T i.i.d. t-distributed random variables:eXt ∼ St (ν, 0, 1) , t = 1, . . . , T (95)

Compute the correlation among each pair of entries.
Consider the limit T →∞ and compute the distribution of

eY ≡ TX
t=1

eXt. (96)

Comment on the difference between the distribution of Y versus the distri-
bution of eY .
From (2.194) in Meucci (2005) the marginals read:

Xt ∼ St (ν, 0, 1) , t = 1, . . . , T . (97)

From (2.191) the cross-correlations read:

Cor {Xt,Xs} = 0, t 6= s. (98)

From (2.195) we obtain

Y ≡
TX
t=1

Xt = 1
0X ∼ St (ν,100T ,10IT1) . (99)

Therefore
Y ∼ St (ν, 0, T ) . (100)

As far as eX is concerned, from (2.136) the cross-correlations read:

Cor
n eXt, eXs

o
= 0, t 6= s. (101)

From the central limit theorem and (1.90) in Meucci (2005) (fix the typo with
the online "Errata" at symmys.com > Book > Downloads) we obtain:

eY → N

µ
0,

ν

ν − 2T
¶
. (102)

Both Y and eY are the sum of uncorrelated identically distributed t variables.
If the variables are independent, the CLT kicks in and the sum becomes

normal. Note: this only holds for ν > 2, otherwise the variance is not defined
and the CLT does not hold. Indeed, if ν = 1 we obtain the Cauchy distribution,
which is stable: the sum of i.i.d. Cauchy variables is Cauchy. If the variables
are jointly t, they cannot be independent, even if they are uncorrelated, recall
the plot of the pdf of the Student t copula.
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2.1.4 Correlation and location-dispersion ellipsoid

Consider the first diagonal entry and the off-diagonal entry (W11,W12) in Ex-
ercise 1.2.8. Define the following two rescaled variables:

X1 ≡ W11 − E {W11}
Sd {W11}

(103)

X2 ≡ W12 − E {W12}
Sd {W12}

(104)

Simulate and scatter-plot a large number of joint samples of X.
Superimpose to the above scatter-plot the plot of the location-dispersion

ellipsoid of this variables. In order to do so, feed the function TwoDimEllipsoid
with the real inputs E {X} and Cov {X} as they follow from the analytical
results (2.227) and (2.228) in Meucci (2005), do not use the sample estimates
from the simulations. Make sure that the ellipsoid suitably fits the simulation
cloud.
Fix ν ≡ 15 and σ1 ≡ σ2 ≡ 1 in (74). Plot the correlation Cor {X1,X2} as a

function of ρ ∈ (−1,+1). (Compare with the result of the previous point, which
is a geometrical representation of the correlation).

See the scripts S_WishartLocationDispersionand
S_WishartCorrelation.
Notice that the correlation can be computed analytically:

Cor {X1,X2} = Cov {X1,X2} (105)

=
1p

Var {W11}
p
Var {W12}

Cov {W11,W12}

=
1p

ν2Σ211
p
ν (Σ11Σ22 +Σ12Σ21)

ν (Σ11Σ12 +Σ12Σ11)

=

√
2ρp
1 + ρ2

2.2 Copula

2.2.1 Normal copula pdf

Consider a generic N -variate normal random variable:

X ∼ N(µ,Σ) . (106)

Generate the function NormalCopulaPDF which takes as input a generic value
u in the N -dimensional unit hypercube as well as the parameters µ and Σ and
outputs the pdf of the copula of X in u.
Hint. See (2.30) in Meucci (2005). To generate a function use the following

header:
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pdfu=NormalCopulaPDF(u,Mu,Sigma).
Then save the script as "NormalCopulaPDF". Since µ is a generic N × 1 vec-
tor and Σ is a generic symmetric and positive N × N matrix, you need the
multivariate normal distribution functions. Use mvnpdf (see (2.156) in Meucci
(2005)), norminv, and (2.30) in Meucci (2005).
Generate a script S_DisplayNormalCopulaPDF where you call the above

function to evaluate the copula pdf at a select grid of bivariate values:

u ∈ G ≡ [0.05 : 0.05 : 0.95]× [0.05 : 0.05 : 0.95] . (107)

Pick µ and Σ of your choice.
Hint. Calculate the pdf value on each grid point, which gives you a 19x19

matrix.
In a separate figure, plot the ensuing surface using surf.

See the script S_DisplayNormalCopulaPDF.

2.2.2 Normal copula cdf

Consider a bi-variate normal random variable:

X ∼ N(µ,Σ) , (108)

where

µ ≡
µ
0
0

¶
, Σ ≡

µ
1 ρ
ρ 1

¶
. (109)

Pick ρ as you please, but make sure to play around with the values ρ ≡ 0.99,
ρ ≡ −0.99 and ρ ≡ 0.
Generate a script S_DisplayNormalCopulaCDFwhere you evaluate the copula

cdf at a select grid of bivariate values:

u ∈ G ≡ [0.05 : 0.05 : 0.95]× [0.05 : 0.05 : 0.95] . (110)

Do not call functions from within the script.
Hint. Calculate the cdf value on each grid point, which gives you a 19x19

matrix. Use (2.31) in Meucci (2005) and the built-in function mvncdf.
In a separate figure, plot the ensuing surface using surf.

See the script S_DisplayNormalCopulaCDF.

2.2.3 Lognormal copula pdf

Consider a generic N -variate lognormal random variable:

X ∼ LogN (µ,Σ) . (111)
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Generate a function which takes as input a generic value u in theN -dimensional
unit hypercube as well as the parameters µ and Σ and outputs the pdf of the
copula of X in u.
Generate a script where you call the above function to evaluate the copula

pdf at a select grid of bivariate values:

u ∈ G ≡ [0.05 : 0.05 : 0.95]× [0.05 : 0.05 : 0.95] . (112)

In a separate figure, plot the ensuing surface.
Hint. Use (2.38) and (2.196) in Meucci (2005).

See the script S_DisplayNormalCopulaPDF.

2.2.4 Normal copula and given marginals

Generate the script S_BivariateSample in which you perform the following
operations.
Generate a bivariate sample X, i.e. a (T ≡ 10, 000)× (N ≡ 2)matrix of joint

observations, from a bivariate random variable Xwhose distribution is defined
as follows: the copula is the copula of a normal distribution with correlation
r ≡ −0.8and the marginals are distributed as follows:

X1 ∼ Ga
¡
ν1, σ

2
1

¢
(113)

X2 ∼ LogN
¡
µ2, σ

2
2

¢
, (114)

where ν1 ≡ 9, σ21 ≡ 2, µ2 ≡ 0 and σ22 ≡ 0.04.
Hints. You are asked to generate a bivariate sample, which has a marginal

gamma distribution and a lognormal distribution but with a copula which is
the same as the copula from a bivariate normal distribution. You will notice
that the correlation of this normal distribution is r, but no other information is
provided on the expected values or the standard deviations. Why? See (2.38) in
Meucci (2005). Therefore, first generate a bivariate normal distribution sample
with correlation r; then calculate its copula using (2.28) in Meucci (2005); finally
remap it to the bivariate distribution you want using (2.34) in Meucci (2005).
In a separate figure, subplot the histogram of the simulations for X1 and

subplot the histogram of the simulations of X2.
Comment on how these histograms, which represent the marginal pdf’s of

X1 and X2, change as the correlation r of the normal distribution varies.
In a separate figure, scatter-plot the simulations of X1 against the respective

simulations of X2.
To visualize the joint pdf of X1 and X2, in a separate figure, plot the re-

spective 3D-histogram.
In a separate figure, subplot the histogram of the grade of X1 and subplot

the histogram of the grade of X2.
In a separate figure, scatter-plot the simulations of the grade of X1 against

the respective simulations of the grade of X2.
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To visualize the joint pdf of the grades of X1 and X2, in a separate figure
use "hist3" to plot the respective 3D-histogram.

See the script S_BivariateSample.

2.2.5 FX copula-marginal factorization

Generate the script S_FXCopulaMarginalin which you perform the following
operations.
Load from db_FX the daily observations of the foreign exchange rates

USD/EUR, USD/GBP and USD/JPY. Define as variables the daily log-changes
of the rates.
Represent the marginal distribution of the three variables in simulation and

display the respective histograms
Represent the copula of the three variables in simulation and display the

scatter-plot of the copula of all pairs of variables.
Hint. Applying the marginal cdf to the simulations of a random variable is

equivalent to sorting

See the script S_FXCopulaMarginal.

2.2.6 Copula vs correlation

Consider a generic N -variate t random variable:

X ∼ St (ν,µ,Σ) . (115)

Generate the function TCopulaPDF which takes as input a generic value u in
the N -dimensional unit hypercube as well as the parameters ν, µ and Σ and
outputs the pdf of the copula of X in u.
Hint. Use (2.30) and (2.188) in Meucci (2005) and the built-in functions

tpdf and tinv. Notice that you will have to re-scale the built-in pdf and the
built-in quantile of the standard t distribution.
Generate a script where you call the above function to evaluate the copula

pdf at a select grid of bivariate values:

u ∈ G ≡ [0.05 : 0.05 : 0.95]× [0.05 : 0.05 : 0.95] . (116)

In a separate figure, plot the ensuing surface.
Comment on the (dis)similarities with the normal copula when ν ≡ 200.
Comment on the (dis)similarities with the normal copula when ν ≡ 1 and

Σ12 ≡ 0. What is the correlation in this case?

See the script S_DisplayCopulaPDF.
From (2.191) in Meucci (2005), when the off-diagonal entries are null, the

marginals are uncorrelated, if the correlation is defined, which is true only for
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ν > 2 (see fix in the Errata). Therefore, for ν > 2 null correlation does not
imply independence, because the pdf is clearly not flat as ν → 2. For ν ≤ 2 the
correlation simply does not exist. However the co-scatter parameter Σ12 can be
set to zero, but this does not imply independence because, again, the pdf is far
from flat as ν ≤ 2.

2.2.7 Full codependence

Generate J ≡ 10, 000 joint simulations for an N ≡ 10 -variate random variable
X in such a way that each marginal is gamma-distributed

Xn ∼ Ga (n, 1) , n = 1, . . . , N , (117)

and such that each two entries are fully codependent, i.e. the cdf of their copula
is (2.106).
Hint. Use (2.34).

See the script S_FullCodependence.

3 Quest for invariance

3.1 Theory

3.1.1 Random walk

Generate a Merton jump-diffusion process Xt at discrete times with arbitrary
parameters. What are the invariants in this process?
Hint. This is a random walk

See the script S_DisplayJumpDiffusionMerton.
The invariants are the non-overlapping changes in the process∆Xt over arbi-

trary intervals. Notice that these are not the only invariants, as any i.i.d. shock
used to generate the process is also an invariant. However, these invariants are
directly observable and their distribution can be estimated with the techniques
discussed in the course.

3.1.2 AR(1)

Generate an Ornstein-Uhlenbeck / AR(1) process.
Prove empirically that for small time intervals and/or low reversion parame-

ters the Ornstein-Uhlenbeck process is a Brownian motion.
Prove analytically that for small time intervals and/or low reversion para-

meters the Ornstein-Uhlenbeck process is a Brownian motion.
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See the script S_AutocorrelatedProcess.
Consider the solution of the Ornstein-Uhlenbeck process

XT+τ = m
¡
1− e−θτ

¢
+ e−θτXT + �T,τ , (118)

where

�T,τ ∼ N
µ
0,
σ2

2θ

¡
1− e−2θτ

¢¶
. (119)

If θτ ≈ 0 we can write

XT+τ ≈ XT +mθτ + �T,τ , (120)

where
�T,τ ∼ N

¡
0, σ2τ

¢
, (121)

which is the standard arithmetic Brownian motion.

3.1.3 Volatility clustering

Generate a GARCH(1,1) process with arbitrary parameters. What are the
invariants of this process?

See the script S_VolatilityClustering.
The invariants are the shocks in the volatility, which also directly drive

the randomness of the process. Notice that these invariants are not directly
measurable.

3.2 Empirical

3.2.1 Equity

Consider any of the daily time series Pt of the stock prices in the database
DB_Equities. Consider the variables

Xt ≡
Pt
Pt−1

(122)

Yt ≡ Pt − Pt−1 (123)

Zt ≡
µ

Pt
Pt−1

¶2
(124)

Wt ≡ Pt+1 − 2Pt + Pt−1 (125)

Determine which among Xt, Yt, Zt, Wt, can potentially be an invariant and
which certainly cannot be an invariant, by computing the histogram from two
sub-samples and by plotting the location-dispersion ellipsoid of a variable with
its lagged value.
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See the script S_EquitiesInvariants. The Wt’s are clearly not invariants

3.2.2 Fixed income

Consider the time series of realizations of the yield curve in DB_FixedIncome.
Check whether the changes in yield curve for a given time to maturity are

invariants using IIDAnalysis.
Check whether the changes in the logarithm of the yield curve for a given

time to maturity are invariants using IIDAnalysis.

Changes in the yield curve and changes in the logarithm of the yield curve
are approximately invariants, whereas the changes in the yield to maturity of a
specific bond are not, see the script S_FixedIncomeInvariants

3.2.3 Derivatives

Consider the time series of daily realizations of the implied volatility surface in
DB_Derivatives.
Check whether the weekly changes in implied volatility for a given level of

moneyness and time to maturity are invariants using IIDAnalysis.
Check whether the weekly changes in the logarithm of the implied volatil-

ity for a given level of moneyness and time to maturity are invariants using
IIDAnalysis.
Define the vector Zt as the juxtaposition of all the entries of the logarithm

of the implied volatility surface at time t. Fit the implied volatility data to a
multivariate autoregressive process of order one:

Zt+1 ≡ ba+ bBZt + b²t+1, (126)

where time is measured in weeks. Check whether the weekly residuals b²t are
invariants using IIDAnalysis.

The weekly changes in (the logarithm of) the implied volatility are not
invariants, because they display significant negative autocorrelation. On
the other hand, the weekly residuals b²t are invariants. See the script
S_DerivativesInvariants

3.2.4 Cointegration

Upload the database DB_SwapParRates of the daily series of a set of par swap
rates.
Determine the (in-sample) decreasingly most cointegrated combination of

the above par swap rates using principal component analysis.
Fit an AR(1) process to these combinations and compute the unconditional

(long term, equilibrium) expectation and standard deviation. Plot the 1-z-score
bands around the long-term mean to generate signals to enter or exit a trade.
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Hint. See Meucci (2009b)

See the script S_StatArbSwaps.

4 Estimation

4.1 Non-parametric

4.1.1 Estimation of moment-based functional

Assume that the invariants Xt are distributed as a mixture. In other words, the
pdf reads:

fX ≡ αfY + (1− α) fZ , (127)

where α ∈ (0, 1) and

fY ⇔ N
¡
µY , σ

2
Y

¢
(128)

fZ ⇔ LogN
¡
µZ , σ

2
Z

¢
. (129)

Consider the variable:

V ≡ αY + (1− α)Z, (130)

where Y and Z are independent and

Y ∼ N
¡
µY , σ

2
Y

¢
(131)

Z ∼ LogN
¡
µZ , σ

2
Z

¢
. (132)

Is (127) the pdf of (130)? If so, prove it. If not, how do you compute the pdf of
(130)?

Formula (127) is not the pdf of (130). You can see this in simulation. Alter-
natively, you can prove it by showing that the moments of X and the moments
of V are different. For instance, denote

s2Y ≡ E
©
Y 2
ª
, s2Z ≡ E

©
Z2
ª
. (133)

Then

E
©
X2
ª
≡

Z
u2fX (u) du (134)

= α

Z
u2fY (u) du+ (1− α)

Z
u2fZ (u) du

= αs2Y + (1− α) s2Z .
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On the other hand

E
©
V 2
ª
≡ E

n
(αY + (1− α)Z)2

o
(135)

= E
n
α2Y 2 + 2α (1− α)Y Z + (1− α)2 Z2

o
= α2 E

©
Y 2
ª
+ 2α(1− α) E {Y }E {Z}+ (1− α)2 E

©
Z2
ª

= α2s2Y + (1− α)
2
s2Z .

Therefore (127) is not the pdf of (130). However, (127) is the pdf of a random
variable, defined in distribution as follows:

X
d≡ BY + (1−B)Z. (136)

In this expression B is a Bernoulli variable:

B ∼ Ber (α) . (137)

This is a discrete random variable that can only assume two values:

B ≡
½
1 with probability α
0 with probability 1− α

. (138)

Therefore, the pdf of B reads:

fB = αδ(1) + (1− α) δ(0), (139)

where δ(s) is the Dirac delta centered in s, see Figure B.2 in the textbook.
When B = 1 in (136) the variable X will be normal as in (131), when B = 0

the variableX will be lognormal as in (132). Therefore, the pdf ofX conditioned
on B reads:

fX|B (x|0) = fZ (x) , fX|B (x|1) = fY (x) . (140)

This two-step method gives rise to the pdf (127). To see this, as in (2.22) in
Meucci (2005) the pdf of X can be written as the marginalization of the joint
pdf of X and B:

fX (x) =

Z
fX,B (x, b) db. (141)

As in (2.43) in Meucci (2005) the joint pdf of X and B can be written as the
product of the conditional and the marginal:

fX,B (x, b) = fX|B (x|b) fB (b) . (142)
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Therefore

fX (x) =

Z
fX|B (x|b) fB (b) db (143)

=

Z
fX|B (x|b)

h
αδ(1) (b) + (1− α) δ(0) (b)

i
db

= α

Z
fX|B (x|b) δ(1) (b) db+ (1− α)

Z
fX|B (x|b) δ(0) (b) db

= αfX|B (x|1) + (1− α) fX|B (x|0)
= αfY (x) + (1− α) fZ (x) .

As for the pdf of (130), it can be obtained as follows.
First we use (T1.14) in the technical appendices at symmys.com > Book >

Downloads with (1.67) and (1.95) in Meucci (2005) to compute the pdf of αY
and (1− α)Z:

fαY (x) =
1

α
p
2πσ2Y

exp

"
−(x/α− µY )

2

2σ2Y

#
(144)

f(1−α)Z (x) =
1

x
p
2πσ2Z

exp

"
−(ln (x/ (1− α))− µZ)

2

2σ2Z

#
(145)

Then we compute the characteristic functions of αY and (1− α)Z as in (1.14)
in Meucci (2005) as the Fourier transform of the respective pdf’s:

φαY = F [fαY ] , φ(1−α)Z = F
£
f(1−α)Z

¤
. (146)

Then we compute the characteristic function of V :

φV (ω) ≡ E
©
eiωV

ª
= E

n
eiω[αY+(1−α)Z]

o
= E

©
eiωαY

ª
E
n
eiω(1−α)Z

o
(147)

= φαY (ω)φ(1−α)Z (ω)

= F [fαY ] (ω)F
£
f(1−α)Z

¤
(ω) .

Using (B.45) in Meucci (2005) we can express the characteristic function of V
in terms of the convolution (B.43) of the pdf’s and the Fourier transform:

φV (ω) = F
£
fαY ∗ f(1−α)Z

¤
(ω) . (148)

Then we compute the pdf of V as in (1.15) in Meucci (2005) as the inverse
Fourier transform of the characteristic function:

fV = F−1 [φV ] . (149)
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Substituting (148) in (149) we finally obtain:

fV = F−1
£
F
£
fαY ∗ f(1−α)Z

¤¤
(150)

= fαY ∗ f(1−α)Z .

Assume that we are interested in the following moment-based functional:

G [fX ] ≡
Z
R

¡
x2 − x

¢
fX (x) dx. (151)

Compute (151) analytically as a function of the inputs α, µY , σY , µZ and σZ .

G [fX ] ≡
Z
R

¡
x2 − x

¢
fX (x) dx (152)

= α

Z
R

¡
x2 − x

¢
fY (x) dx+ (1− α)

Z
R

¡
x2 − x

¢
fZ (x) dx

= α
³
Var {Y }+ (E {Y })2 − E {Y }

´
+(1− α)

³
Var {Z}+ (E {Z})2 − E {Z}

´
(1.71)(1.72)(1.98)(1.99)

= α
¡
µ2Y + σ2Y − µY

¢
+(1− α)

µ
e2µZ+2σ

2
Z − eµZ+

σ2Z
2

¶

Build a function QuantileMixture that computes the quantile of (127) by
linear interpolation/extrapolation of the respective cdf on a fine set of equally
spaced points for generic values of α, µY , σY , µZ , σZ . In order to use this func-
tion in the sequel, make sure the function can accept a vector of values u in
(0, 1) as input, not just one value, thereby outputting the respective vector of
values x ≡ QX (u) in the domain of X.
Hint. Use the built-in cumulative distribution functions that correspond to

(128) and (129).
Assume knowledge of the following parameters:

α ≡ 0.8, σY ≡ 0.2, µZ ≡ 0, σZ ≡ 0.15. (153)

Set µY ≡ 0.1 and generate a sample of T ≡ 52 i.i.d. observations

iT ≡ {x1, . . . , xT } (154)

from the distribution (127).
Hint. feed a uniform sample into the function QuantileMixture.
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See the script S_GenerateMixtureSample.

Consider the following estimators:bGa [iT ] ≡ (x1 − xT )x
2
2 (155)

bGb [iT ] ≡
1

T

TX
t=1

xt (156)

bGc [iT ] ≡ 5. (157)

Evaluate the performance of the estimators (155), (156) and (157) with respect
to (151) as in the script S_Estimator by assuming (153) and by stress-testing
the parameter µY in the range [0, 0.2].

See script S_EstimateMomentsComboEvaluation.

Compute the non-parametric estimator bGd of (151) defined by (4.36). As-
sume knowledge of the parameters (153) and evaluate the performance of bGd

with respect to (151) as in the script S_EstimateExpectedValueEvaluation
by stress-testing the parameter µY in the range [0, 0.2].

See script S_EstimateMomentsComboEvaluation.
The non-parametric estimator of

G [fX ] ≡
Z
R

¡
x2 − x

¢
fX (x) dx (158)

follows from (4.36) in Meucci (2005):

bGd (iT ) ≡
Z
R

¡
x2 − x

¢
fiT (x) dx (159)

=

Z
R
x2fiT (x) dx−

Z
R
xfiT (x) dx.

The second term is the sample mean (1.126) in Meucci (2005):

bm ≡ Z
R
xfiT (x) dx =

1

T

TX
t=1

xt (160)

The first term is the sample non-central second moment:

cns ≡ Z
R
x2fiT (x) dx =

1

T

TX
t=1

x2t . (161)

By applying (T1.39) in the technical appendices at symmys.com > Book >
Download to (1.126) and (1.127) in Meucci (2005) we obtain

cns = bs2 + bm2, (162)
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where bs2 is the sample variance (1.127) in Meucci (2005):
bs2 ≡ 1

T

TX
t=1

(xt − bm)2 . (163)

Therefore

bGd (iT ) = cns− bm (164)

= bs2 + bm2 − bm.
4.1.2 Estimation of quantile

Assume that we are interested in this functional:

G [fX ] ≡ (I [fX ])−1 (p) , (165)

where I [·] is the integration operator and p ≡ 0.5. Notice that the above is
simply the quantile with confidence p, see (1.8) and (1.17) in Meucci (2005):

G [fX ] ≡ QX (p) . (166)

In particular, given that p ≡ 0.5, the above is the median.
Compute the non-parametric estimator bqp of (165) defined by (4.36) in

Meucci (2005). Assume knowledge of the parameters (153) and evaluate the
performance of bqp with respect to (165) as in the script S_Estimator by stress-
testing the parameter µY in the range [0, 0.2].
Hint. Use the function QuantileMixture.

See script S_EstimateQuantileEvaluation.
From (4.39) in Meucci (2005), the non-parametric estimator of the median

is the sample median (1.130) in Meucci (2005):

bGe (iT ) ≡ x[T/2]:T . (167)

Evaluate the performance of the estimator (156) with respect to (165) as in
the script S_Estimator by stress-testing the parameter µY in the range [0, 0.2].
Hint. Use the function QuantileMixture.

See script S_EstimateQuantileEvaluation.

4.2 Maximum likelihood

4.2.1 Basics

Consider the time series of realizations of the random variable X in the database
DBTimeSeries.
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Check that the provided series represents the realizations of an invariant
using IIDAnalysis.
Assuming that X is an invariant, let fX denote the unknown pdf that rep-

resents the unknown distribution of each realization in the time series. Make
the following assumption on the generating process for X, where we use the
notation of (1.79) and (1.95) in Meucci (2005):

fX ≈ fθ ≡
(

fCa
θ,θ2

for θ ∈ [−0.04,−0.01]
fLogN
θ,(θ−0.01)2 for θ ∈ ({0.02} ∪ {0.03}) (168)

Compute numerically the maximum likelihood estimator bθML of θ.
Hint. Approximate the continuum [−0.04,−0.01] with a fine set of equally

spaced points; evaluate the (log-)likelihood for every value of θ.
Assume now that you are interested in the p-quantile of X for p ≡ 1%, as

defined in (1.17). Use the above result to compute the ML estimator bqML
p and

compare this ML estimate with the non-parametric estimate of the quantile for
the same confidence level.
Hint. As in (4.38) in Meucci (2005), the true quantile is a functional of the

unknown distribution of X:

Qp (X) ≡ qp [fX ] . (169)

Therefore, the ML estimator of the quantile is the functional applied to the
ML-estimated distribution:

bqML
p ≡ qp

h
fθML

i
. (170)

On the other hand, as in (4.36) in Meucci (2005) the non-parametric quantile
is the functional applied to the empirical pdf:

bqNP
p ≡ qp [fiT ] , (171)

see also Section 4.2.1.

See script S_MLEbasics.

4.2.2 MLE for univariate elliptical variables

Consider as in (1.28) in Meucci (2005) a symmetrical univariate random vari-
able X. It is easy to check that such distributions are all and only the one-
dimensional elliptical distributions. In other words, there exist two numbers µ
and σ and a univariate function g such that:

X ∼ El
¡
µ, σ2, g

¢
. (172)

Assume that you know the functional form of g. Adapt the proof in the tech-
nical appendix www.4.2 at symmys.com > Book > Downloads to compute the
maximum likelihood estimators bµ and bσ2 of µ and σ2 respectively.
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First of all we need two general results. Define

M2
t ≡ ω2 (xt − µ)

2 , (173)

Then

∂M2
t

∂µ
= −2ω2 (xt − µ) (174)

∂M2
t

∂ω2
= (xt − µ)

2 (175)

Now assume that the distribution of the invariants is (172). To compute the ML
estimators bµ and bσ2 we have to maximize the likelihood function as in (4.66) in
Meucci (2005), which after (4.74) reads:³bµ [iT ] , bσ2 [iT ]´ ≡ argmax

µ,σ2∈Θ

TX
t=1

ln

Ã
1√
σ2

g

Ã
(xt − µ)

2

σ2

!!
, (176)

where the parameter set is
Θ ≡ R×R+. (177)

We neglect the constraint that σ2 be positive and verify ex-post that the un-
constrained solution satisfies this condition. It is easier to compute the ML
estimators of µ and ω2 ≡ 1/σ2. The ML estimator of σ2 is simply the inverse
of the estimator of ω2 by the invariance property (4.70) in Meucci (2005) of the
ML estimators.
The log-likelihood reads:

ln (fθ (iT )) =
T

2
ln
¯̄
ω2
¯̄
+

TX
t=1

ln
£
g
¡
M2

t

¢¤
. (178)

The first order conditions with respect to µ read:

0 =
∂

∂µ
[ln (fθ (iT ))] (179)

=
∂

∂µ

"
TX
t=1

ln fθ (xt)

#

=
∂

∂µ

"
TX
t=1

ln
£
g
¡
M2

t

¢¤#

=
TX
t=1

g0
¡
M2

t

¢
g (M2

t )

∂M2
t

∂µ
=

TX
t=1

wtω
2 (xt − µ) ,

where we used (174) and we defined:

wt ≡ −2
g0
¡
M2

t

¢
g (M2

t )
. (180)
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The solution to this equations is

bµ = PT
t=1wtxtPT
s=1ws

. (181)

The first order conditions with respect to ω2 read

0 =
∂ ln (fθ (iT ))

∂ω2
=

∂
PT

t=1 ln fθ (xt)

∂ω2
(182)

=
T

2

∂ ln
¡
ω2
¢

∂ω2
+

TX
t=1

g0
¡
M2

t

¢
g (M2

t )

∂M2
t

∂ω2

=
T

2

1

ω2
− 1
2

TX
t=1

wt (xt − µ)2 ,

where in the last row we used (175).
Thus the solution to (182) reads:

bσ2 ≡ 1³cω2´ = 1

T

TX
t=1

wt (xt − bµ)2 (183)

This number is positive and thus the unconstrained optimization is correct.

4.2.3 MLE for multivariate Student t distribution

Consider t-distributed invariants:

X ∼ St (ν,µ,Σ) . (184)

Assume ν known and use (4.80)-(4.82) in Meucci (2005) to build a recursive
routine that computes the ML estimates bµML and bΣML of µ andΣ respectively.
Hint. The "pen & paper" part will lead you to the weights (4.80) in Meucci

(2005) . First compute the generator g that appears in the weighting function
(4.79) in Meucci (2005). Under the Student t assumption the pdf is (2.188) in
Meucci (2005) and the generator follows accordingly. Now you can compute the
weighting function (4.79) in Meucci (2005), namely:

w (z) ≡ −2g
0 (z)

g (z)
. (185)

Finally, you can compute the weights (4.80) in Meucci (2005) in MATLAB.
Upload the database DBUsSwapRates of the daily time series of par 2yr,

5yr and 10yr swap rates. Compute the invariants relative to a daily estimation
interval. Then use the above routine to estimate the expectation and the covari-
ance relative to the 2yr and the 5yr rates under the assumption that ν ≡ 3 and
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ν ≡ 100 respectively. Represent the two sets of expectations and the covariances
in one figure in terms of the ellipsoid. Also scatter-plot the observations.

See script S_FitSwapToT.
First we have to compute the generator g that appears in the weighting

function (4.79). Under the Student t assumption the pdf is (2.188). Thus, as in
(2.188) the generator reads:

g (z) ≡
Γ
¡
ν+N
2

¢
Γ
¡
ν
2

¢
(νπ)

N
2

³
1 +

z

ν

´− ν+N
2

. (186)

Hence the weighting function (4.79) reads:

w (z) ≡ −2g
0 (z)

g (z)
=

ν +N

ν + z
. (187)

Therefore the weights (4.80) read:

wt ≡
ν +N

ν + (xt − bµ)0 bΣ−1 (x− bµ) . (188)

4.3 Shrinkage

4.3.1 Location

Fix N ≡ 5 and generate a N -dimensional location vector µ and a N×N scatter
matrix Σ.
Consider a normal random variable:

X ∼ N(µ,Σ) . (189)

Generate a time series of T ≡ 30 observations from (189).
Build a function that computes the shrinkage estimator (4.138) in Meucci

(2005).

See script S_ShrinkageEstimators.

4.3.2 Scatter

Build a function that computes the shrinkage estimator (4.160) in Meucci (2005).

See script S_ShrinkageEstimators.
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4.3.3 Sample covariance and eigenvalue dispersion

Fix N ≡ 50, µ ≡ 0N , Σ ≡ IN . Reproduce the surface in Figure 4.15. You do
not need to superimpose the true spectrum as in the figure
Hints: Determine a grid of values for the number of observations T in the

time series. For each value of T
a) generate an i.i.d. time series

iT ≡ {x1, . . . ,xT } (190)

from
X ∼ N(µ,Σ) . (191)

b) compute the sample covariance bΣ.
c) perform the PC decomposition of bΣ and store the sample eigenvalues (i.e.
the sample spectrum)
d) perform a)-c) a large enough number of times (~ 100 times)
e) compute the average sample spectrum

See script S_EigenvalueDispersion.

4.4 Random matrix theory

4.4.1 Semi-circular law

Consider a N ×N matrix X where for all m,n = 1, . . . , N the entries are i.i.d.
Xmn ∼ fX , where fX is a univariate distribution with expectation zero and
standard deviation one.
Consider the symmetrized and rescaled matrix

Y ≡ 1√
8N

(X+X0) . (192)

Consider the eigenvalues λ1, . . . , λN of Y and the density that they define

h ≡ 1

N

NX
n=1

δ(λn), (193)

where δ is the Dirac delta (B.18) in Meucci (2005). Notice that, since (192) is
random, so is the function (193).
According to random matrix theory, in some topology the following limit for

the random function h holds
lim

N→∞
h = g, (194)

where g is the rescaled upper semicircle function, defined for λ ≥ 0 as follows

g (λ) ≡ 2

π

p
1− λ2. (195)

39



-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 2: Semi-circle law for symmetric random matrices

Generate a script that shows (194) when the distribution fX is standard
normal, shifted/rescaled normal, and shifted/rescaled exponential.
Hint. Choose a large N and simulate (192) once. This is a realization of

(192). Compute the realized eigenvalues and the respective realization of h
defined in (193). Approximate h with a histogram. Show that the histogram
looks similar to g defined in (195).

See the script S_SemiCircular.

4.4.2 Marchenko-Pastur limit

Consider a T ×N matrix X where for all m,n = 1, . . . , N the entries are i.i.d.
Xmn ∼ fX , where fX is a univariate distribution with expectation zero and
standard deviation one.
Consider the sample covariance estimator (4.42) in Meucci (2005)

Y ≡ 1

T
X0X. (196)

Consider the eigenvalues λ1, . . . , λN of Y and the density that they define

h ≡ 1

N

NX
n=1

δ(λn), (197)

where δ is the Dirac delta (B.18) in Meucci (2005). Notice that, since (196) is
random, so is the function (197).
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According to random matrix theory, in some topology the following limit for
the random function h holds

lim
N≡qT→∞

h = gq, (198)

where the function gq is defined as

gq (λ) ≡
1

2qπλ

q¡
λq − λ

¢ ¡
λ− λq

¢
, (199)

for λmin ≤ λ ≤ λmax where

λq ≡ (1−
√
q)
2
, λq ≡ (1 +

√
q)
2 . (200)
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Figure 3: MP law for positive definite symmetric random matrices

Generate a script that shows (199) when the distribution fX is standard
normal, shifted/rescaled normal, and shifted/rescaled exponential.
Hint. Proceed as in Exercise 4.4.1.

See the script S_PasturMarchenko.

4.5 Robust

4.5.1 Influence function of sample mean

Adapt the proof in the technical appendix www.4.7 at symmys.com > Book
> Downloads to the univariate case to compute the influence function of the
sample mean.
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Sample estimators of the unknown quantity G [fX ] are by definition explicit
functionals of the empirical pdf:

eG [fiT ] ≡ G [fiT ] . (201)

Therefore from its definition (4.185) in Meucci (2005) the influence function
reads:

IF
³
y, fX , bG´ ≡ lim

�→0

1

�

³
G
h
(1− �) fX + �δ(y)

i
−G [fX ]

´
, (202)

where y is an arbitrary point. Now consider the function:

h� ≡ (1− �) fX + �δ(y). (203)

The influence function can be written:

IF
³
y, fX , bG´ ≡ lim

�→0

1

�
(G [h�]−G [h0]) =

dG [h�]

d�

¯̄̄̄
0

. (204)

Consider the functional associated with the sample mean bµ, which reads:
eµ [h] ≡ Z

R
xh (x) dx. (205)

From (204) the influence function reads:

IF (y, f, bµ) ≡ deµ [h�]
d�

¯̄̄̄
0

. (206)

First we compute:

eµ [h�] ≡ Z
R
xh� (x) dx (207)

=

Z
R
x
³
(1− �) f (x) + �δ(y) (x)

´
dx

= (1− �)

Z
R
xf (x) dx+ �y

= E {X}+ � (−E {X}+ y) .

From this and (206) we derive:

IF (y, f, bµ) = −E {X}+ y. (208)

4.5.2 Influence function of sample variance

Adapt the proof in the technical appendix www.4.7 at symmys.com > Book
> Downloads to the univariate case to compute the influence function of the
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sample variance.

Consider the functional associated with the sample variance bσ2, which reads:
eσ2 [h] ≡ Z

R
(x− eµ [h])2 h (x) dx. (209)

From (204) the influence function reads:

IF
³
y, f, bσ2´ ≡ lim

�→0

1

�

³eσ2 [h�]− eσ2 [h0]´ = deσ2 [h�]
d�

¯̄̄̄
¯
0

. (210)

First we compute:

eσ2 [h�] ≡ Z
R
(x− eµ [h�])2 h� (x) dx (211)

=

Z
R
(x− eµ [h�])2 ³(1− �) f (x) + �δ(y) (x)

´
dx

= (1− �)

Z
R
(x− eµ [h�])2 f (x) dx+ � (y − eµ [h�])2

Deriving this expression with respect to � we obtain:

IF
³
y, f, bσ2´ =

deσ2 [h�]
d�

¯̄̄̄
¯
0

(212)

= −
Z
R
(x− eµ [h0])2 f (x) dx

+(1− 0)
Z
R

d

d�

¯̄̄̄
0

(x− eµ [h�])2 f (x) dx
+(y − eµ [h0])2
+0× d

d�

¯̄̄̄
0

(y − eµ [h�])2
Using eµ [h0] = E {X} this means:

IF
³
y, f, bσ2´ = −Var {X} (213)

−
Z
R
2
deµ [h�]
d�

¯̄̄̄
0

(x− E {X}) f (x) dx

+(y − E {X})2

Now using (208) we obtain:

IF
³
y, f, bσ2´ = −Var {X} (214)

−2
Z
R
(y − E {X}) (x− E {X}) f (x) dx

+(y − E {X})2
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The term in the middle is null. Therefore:

IF
³
y, f, bσ2´ = −Var {X}+ (y − E {X})2 (215)

4.6 Bayesian

4.6.1 Prior on correlation

Assume that the returns Xt ≡ (Xt,1,Xt,2,Xt,3)
0 on three stocks are jointly

normal:
Xt ∼ N(µ,Σ) , (216)

with null expectations and unit standard deviations:

µ ≡

⎛⎝ 0
0
0

⎞⎠ (217)

Σ ≡

⎛⎝ 1 θ12 θ13
θ12 1 θ23
θ13 θ23 1

⎞⎠ (218)

In this situation the joint distribution of the returns is fully determined by three
parameters:

θ ≡ (θ12, θ13, θ23)0 . (219)

These parameters are constrained on a domain:

θ ∈ Θ ⊂ (−1, 1)× (−1, 1)× (−1, 1) . (220)

Since Σ must be positive definite, the domain Θ is a proper subset of (−1, 1)×
(−1, 1)× (−1, 1). For instance, θ ≡ − (.9, .9, .9)0 is not a feasible value.
Assume an uninformative uniform prior for the correlations. In other words,

assume that θ is uniformly distributed on its domain:

θ ∼ U(Θ) . (221)

Generate 10, 000 simulations from (221).
Hint. Generate a uniform distribution on (−1, 1)3 then discard the simula-

tions such that Σ is not positive definite.
In three subplots plot the histograms of θ12, θ13 and θ23 respectively, showing

how the uniform prior implied non-uniform marginal distributions on each of
the correlations.

See the script S_CorrelationPriorUniform.
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4.6.2 Normal-Inverse-Wishart posterior

Create a function randNIW that takes as inputs a generic N -dimensional vector
µ0, a generic positive and symmetric N ×N matrix Σ0, two positive scalars T0
and ν0 and the number of simulations J and outputs J independent simulations
of the normal-inverse-Wishart distribution, as defined in (7.20)-(7.21) in Meucci
(2005).
In a script S_AnalyzeNIWPriorPosterior upload the database DBUsSwapRates

of daily USD swap rates and compute the daily rate changes from. Then com-
pute T , bµ and bΣ (see Chapter 7 for the notation).
In the same script S_AnalyzeNIWPriorPosterior set ν0 ≡ T0 ≡ 52 and

define the prior parameters µ0 and Σ0 arbitrarily. Use the function randNIW to
generate J ≡ 104 scenarios of the prior (7.20)-(7.21) in Meucci (2005).
In the same script S_AnalyzeNIWPriorPosterior compute the parameters

of the posterior distribution and use the function randNIW to generate J ≡ 104
scenarios of the posterior.
Specialize the script S_AnalyzeNIWPriorPosterior to the case N ≡ 1, i.e.

only consider the first swap rate change.
In one figure, subplot the histogram of the marginal distribution of the prior of
µ and superimpose the profile of its analytical pdf. Then subplot the histogram
of the marginal distribution of the prior of 1/σ2 and superimpose the profile of
its analytical pdf.
In a different figure, subplot the histogram of the marginal distribution of the
posterior of µ and superimpose the profile of its analytical pdf. Then subplot the
histogram of the marginal distribution of the posterior of 1/σ2 and superimpose
the profile of its analytical pdf.
Check that (7.4) in Meucci (2005) holds by changing the relative weights of
ν0, T0 with respect to T .

See script S_AnalyzeNIWPriorPosterior.

4.7 Missing data

4.7.1 EM algorithm

Consider the attached database db_HighYieldIndices of the daily time series
of high-yield bond indices. As you will see, some observations are missing.
Compute the time series of the daily compounded returns, replacing "NaN" for
the missing observations.
Assume that the distribution of the daily compounded returns is normal

Xt ∼ N(µ,Σ) . (222)

Estimate the parameters (µ,Σ) by means of the EM algorithm2.

2Check the online Errata at symmys.com > Book > Downloads, as there is a typo in the
first and second printing of the textbook (no typo from the third printing).
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See script S_EMexampleHighYield.

4.8 Testing

4.8.1 Sample mean

Consider a time series of independent and identically distributed random vari-
ables

Xt ∼ N
¡
µ, σ2

¢
, t = 1, . . . , T . (223)

Consider the sample mean

bµ ≡ 1

T

TX
t=1

Xt. (224)

Compute the distribution of bµ.
We can write⎛⎜⎝ X1

...
XT

⎞⎟⎠ ∼ N
⎛⎜⎜⎝
⎛⎜⎝ µ

...
µ

⎞⎟⎠ ,

⎛⎜⎜⎝
σ2 0 · · ·

0
. . .

... σ2

⎞⎟⎟⎠
⎞⎟⎟⎠ . (225)

From (2.163) in Meucci (2005), which we report here

X ∼ N(µ,Σ)⇒ a+BX ∼ N
¡
a+Bµ,BΣB0

¢
for any conformable vector and matrix a and B respectively, it follows

bµ ∼ Nµµ, σ2
T

¶
. (226)

What is the probability that the sample mean (224) exceed a given value eµ?
P {bµ > eµ} = 1− P {bµ ≤ eµ} (227)

= 1− P
( bµ− µp

σ2/T
≤ eµ− µp

σ2/T

)
From (4.8.1) and (226) it followsbµ− µp

σ2/T
∼ N(0, 1) , (228)

therefore

P {bµ > eµ} = 1− ΦÃ eµ− µp
σ2/T

!
, (229)
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where Φ denotes the cdf of the standard normal distribution.

4.8.2 p-value analytical

Consider a normal invariant

Xt ∼ N
¡
µ, σ2

¢
(230)

in a time series of length T . Consider the ML estimator bµ of the location
parameter µ. Suppose that you observe a value eµ for the estimator. Assume
that you believe that

µ ≡ µ0, σ2 ≡ σ20. (231)

The p-value of bµ for eµ under the hypothesis (231) is the probability of
observing a value as extreme as the observed value:

p ≡ P {bµ ≶ eµ} . (232)

Compute the expression of the p-value in terms of the cdf of the estimator.

From (4.102) in Meucci (2005)

bµ ∼ Nµµ, σ2
T

¶
. (233)

Therefore in the notation of (1.68) in Meucci (2005) we obtain

p ≡ P {bµ ≤ eµ} = FN
µ0,σ

2
0/T

(eµ) (234)

or

p ≡ P {bµ ≥ eµ} = 1− P {bµ ≤ eµ} (235)

= 1− FN
µ0,σ

2
0/T

(eµ) .
4.8.3 t-test, location, analytical

Consider a normal invariant

Xt ∼ N
¡
µ, σ2

¢
(236)

in a time series of length T . Consider the ML estimators bµ and bσ2 of the location
and scatter parameters µ and σ2 respectively. The t-statistic for bµ is defined as

btµ0 ≡ bµ− µ0qbσ2/ (T − 1) . (237)

Compute the distribution of btµ.
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Hint. Recall that if Yσ2 and Zν are independent and such that

Yσ2 ∼ N
¡
0, σ2

¢
(238)

νZ2ν ∼ χ2ν (239)

then

Xν,σ2 ≡
Yσ2p
Z2ν
∼ St

¡
ν, 0, σ2

¢
. (240)

From (4.103), (1.106) and (1.109) in Meucci (2005) it follows

(T − 1)
Ã

T

T − 1
bσ2
σ2

!
∼ χ2T−1. (241)

From (233) we obtain r
T

σ2
(bµ− µ) ∼ N(0, 1) . (242)

Furthermore, from the proof in Appendix www.4.3 we derive that bµ and bσ2 are
independent. From (240), we obtain

btµ ≡ bµ− µqbσ2/ (T − 1) (243)

=

r
T

σ2
(bµ− µ)

1q
Tσ2

(T−1)σ2

d
=

Y1q
Z2T−1

.

Therefore btµ ∼ St (T − 1, 0, 1) . (244)

You would like to ascertain whether it is possible that

µ = µ0 (245)

for an arbitrary value µ0 in (236). How can you asses if the hypothesis (245) is
acceptable?

First, compute the distribution of (237) under (245). Then compute the
realization etµ0 of (237). In the notation (1.87) in Meucci (2005) we obtain:

P
©btµ0 ≤ etµ0ª = F StT−1,0,1

¡etµ0¢ (246)

P
©btµ0 ≥ etµ0ª = 1− F StT−1,0,1

¡etµ0¢ . (247)

Therefore, if tα is so small or so large that either probabilities are too small,
then (245) is very unlikely.
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4.8.4 t-test, factor loadings, analytical

Consider two jointly normal invariantsµ
Xt

Ft

¶
∼ N

µµ
µX
µF

¶
,

µ
σ2X ρσXσF

ρσXσF σ2F

¶¶
. (248)

Consider a conditional model of the kind (4.88) in Meucci (2005):

Xt = α+ βft + Ut, (249)

where
Ut|ft ∼ N

¡
0, σ2

¢
. (250)

What is the conditional model (249)-(250) ensuing from (248)?

See (2.173) and/or (3.130)-(3.131) in Meucci (2005) to derive

α ≡ µX − ρ
σX
σF

µF (251)

β ≡ ρ
σX
σF

(252)

σ2 ≡ σ2X
¡
1− ρ2

¢
. (253)

Consider the conditional model (249)-(250) for the invariants. Compute the

ML estimators of the factor loadings
³bα, bβ´ given the observations

iT ≡ {x1, f1, . . . , xT , fT } . (254)

Hint. Define f 0t ≡ (1, ft) and

bΣXF ≡ 1

T

TX
t=1

xtf
0
t (255)

bΣF ≡ 1

T

TX
t=1

ftf
0
t . (256)

Follow the proof of (4.126) in Meucci (2005) to derive³bα, bβ´ = bΣXF
bΣ−1F , (257)

Compute the joint distribution of the ML estimators of the factor loadings³bα, bβ´ under the conditional model (249)-(250).
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Follow the proof of (4.129) in Meucci (2005) to derive in terms of a (degen-
erate) matrix-valued normal distribution³bα, bβ´ ∼ Nµ(α, β) , σ2

T
, bΣ−1F ¶

. (258)

From (2.180) in Meucci (2005) we then obtainµ bαbβ
¶
∼ N

µµ
α
β

¶
,
σ2

T
bΣ−1F ¶

. (259)

Compute the distribution of the ML estimator bσ2 of the dispersion parameter
that appears in (250).

Follow the proof of (4.130) and use (2.230) in Meucci (2005) to derive

Tbσ2 ∼ Ga ¡T − 2, σ2¢ . (260)

Compute the distribution of the t-statistic for bα
btα ≡ √T − 2(bα− α)qbσ2bσ2α (261)

and the distribution of the t-statistic for bβ
btβ ≡ √T − 2 bβ − βqbσ2bσ2β , (262)

where bσ2α is the north-west entry of bΣ−1F and bσ2β is its south-east entry.
From (260), (1.106) and (1.109) in Meucci (2005) it follows

(T − 2)
Ã

T

T − 2
bσ2
σ2

!
∼ χ2T−2. (263)

From (259) we obtain s
Tbσ2ασ2 (bα− α) ∼ N(0, 1) , (264)

and similarly for β. Furthermore, follow the proof in Appendix www.4.4 to
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derive that
³bα, bβ´ and bσ2 are independent. Using (240), we obtain

btα ≡
√
T − 2(bα− α)qbσ2bσ2α (265)

=

q
T

σ2ασ
2 (bα− α)q
T

T−2
σ2

σ2

Then from (240) we derive

btα d
=

Y1q
Z2T−2

∼ St (T − 2, 0, 1) , (266)

You would like to ascertain whether it is possible that

α = α0 (267)

for an arbitrary value α0 in (249), typically α0 ≡ 0. How can you asses if the
hypothesis (267) is acceptable?

First, compute the distribution of (261) under (267). Then compute the
realization etα0 of (261). In the notation (1.87) in Meucci (2005) we obtain:

P
©btα0 ≤ etα0ª = F Stν,0,1

¡etα0¢ (268)

P
©btα0 ≥ etα0ª = 1− F Stν,0,1

¡etα0¢ . (269)

Therefore, if tα is so small or so large that either probabilities are too small,
then (267) is very unlikely.

More in general, consider a conditional model of the kind (4.88) in Meucci
(2005)

Xt|ft = b0ft + Ut, (270)

where ft is a set of K factors that include a constant and

Ut|ft ∼ N
¡
0, σ2

¢
. (271)

Consider the ML estimator bb of b. Compute the distribution of the F -statistic
for the linear assumptions A

bFb ≡ (T − 2)
³bb− b´0A0A

³bb− b´bσ2 (272)

and use this result to asses if a hypothesis

Ab = a (273)

is acceptable for arbitrary conformable matrix/vector pairs A and a.
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4.8.5 Generalized t-tests, simulations

Consider a joint model for the invariants: for t = 1, . . . , T . The marginals are

Xt ∼ LogN
¡
µX , σ

2
X

¢
, (274)

Ft ∼ Ga
¡
νF , σ

2
F

¢
; (275)

and the copula is the copula of the diagonal entries of Wishart distribution

Wt ∼W(νW ,ΣW ) . (276)

Consider the coefficients that define the regression line (3.127)

eXt ≡ α+ βFt. (277)

Compute the non-parametric estimators
³bα, bβ´ of the regression coefficients.

From (4.52) in Meucci (2005) they read as in (257).

Are
³bα, bβ´ the maximum-likelihood estimators of the regression coefficients?

No, because the regression model ensuing from (274)-(276) is not condition-
ally normal as in (249)-(250).

Generate arbitrary values for the parameters in (274)-(276) and for the num-
ber of observations T and compute in simulation the distribution of the statistic

bGα ≡
√
T − 2(bα− α)qbσ2bσ2α (278)

and the distribution of the statistic

bGβ ≡
√
T − 2

bβ − βqbσ2bσ2β . (279)

Compare the empirical distribution of (278) with the analytical distribu-
tion of (261) as well as the empirical distribution of (279) with the analytical
distribution of (262) and comment.

See script S_TStatApprox. The distribution of (278) is very similar to that
of (261) even for relatively small values of T . The same holds for the distribution
of (279) as compared to that of (262).
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5 Projection and pricing

5.1 Projection of skewness, kurtosis, and all standardized
summary statistics

This exercise is discussed in greater depth and placed into a broader context in
Meucci (2010a), freely available online at ssrn.com.
Consider an invariant, which we denote by Xt, refer to the "quest for invari-

ance" in Meucci (2005), Meucci (2009a) and Meucci (2010c). Assume that we
have properly estimated the distribution of such one-period invariant. Then we
can compute the expectation (1.25) in Meucci (2005)

µX ≡ E{X}; (280)

the standard deviation (1.42) in Meucci (2005)

σX ≡
p
E{(X − µX)

2}; (281)

the skewness (1.49) in Meucci (2005)

skX ≡ E{(X − µX)
3}/σ3X ; (282)

the kurtosis (1.51) in Meucci (2005)

kuX ≡ E{(X − µX)
4}/σ4X ; (283)

and in general n-th standardized summary statistics

γ
(n)
X ≡ E{(X − µX)

n}/σnX , n ≥ 3. (284)

Consider the projected invariant, defined as the sum of k intermediate single-
period invariants

Y = X1 + · · ·+Xk. (285)

Such rule applies e.g. to the compounded return (3.11) in Meucci (2005), but
not to the linear return (3.10) in Meucci (2005), see also Meucci (2005) for this
pitfall.
Project the single-period statistics (280)-(284) to the arbitrary horizon k, i.e.

compute the first n standardized summary statistics for the projected invariant
Y

µY , σY , skY , kuY , γ
(5)
Y , . . . , γ

(n)
Y (286)

from the first n single-period statistics for the single-period invariant X

µX , σX , skX , kuX , γ
(5)
X , . . . , γ

(n)
X . (287)

Hints.
Use the central moments, see (1.48) in Meucci (2005)

µ
(1)
X ≡ µX ; µ

(n)
X ≡ E{(X − µX)

n}, n = 2, 3, . . . ; (288)
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the non-central, or raw, moments, see (1.47) in Meucci (2005)

eµ(n)X ≡ E{Xn}, n = 1, 2, . . . ; (289)

and the cumulants

κ
(n)
X ≡

dn ln
¡
E
©
ezX

ª¢
dzn

¯̄̄̄
¯
z=0

, n = 1, 2, . . . . (290)

Then use recursively the identity

κ
(n)
X = eµ(n)X −

n−1X
k=1

¡
n−1
k−1
¢
κ
(k)
X eµ(n−k)X , (291)

see Kendall and Stuart (1969).

Base case Projection

Summary 
statistics

Central 
moments

Non-central 
moments

Cumulants

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Figure 4: Projection of summary statistics to an aribtrary horizon

.

See script S_ProjSummStats. The steps involved are the following, refer to
Figure 4.
- Step 0. We collect the first n statistics (280)-(284) of the invariant Xt

µX , σX , skX , kuX , γ
(5)
X , . . . , γ

(n)
X . (292)

- Step 1. We compute from (292) the central moments µ(1)X , . . . , µ
(n)
X of Xt. To
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do so, notice from the definition of central moments (288) that µ(2)X ≡ σ2X and
that from (284) we obtain

µ
(n)
X = γ

(n)
X σnX , n ≥ 3. (293)

- Step 2. We compute from the central moments µ(1)X , . . . , µ
(n)
X the non-central

moments eµ(1)X , . . . , eµ(n)X of Xt, see Exercise 1.1.8.
- Step 3. We compute from the non-central moments eµ(1)X , . . . , eµ(n)X the cumu-
lants κ(1)X , . . . , κ

(n)
X of Xt. To do so, we start from κ

(1)
X = eµ(1)X : this follows from

the Taylor approximations E
©
ezX

ª
≈ E {1 + zX} = 1 + zeµ(1)X for any small z

and ln(1 + x) ≈ x for any small x, and from the definition of the first cumulant
in (290). Then we apply recursively the identity (291).
- Step 4. We compute from the cumulants κ

(1)
X , . . . , κ

(n)
X of Xt the cumu-

lants κ(1)Y , . . . , κ
(n)
Y of the projection Y ≡ X1 + · · · + Xτ . To do so, we no-

tice that for any independent variables X1, . . . ,Xτ we have E
©
ez(X1+···+Xτ )

ª
=

E
©
ezX1

ª
· · ·E

©
ezXτ

ª
. Substituting this in the definition of the cumulants (290)

we obtain
κ
(n)
X1+···+Xτ

= κ
(n)
X1
+ · · ·+ κ

(n)
Xτ
. (294)

In particular, since Xt is an invariant, all the Xt’s are identically distributed.
Therefore the projected cumulants read

κ
(n)
Y = τκ

(n)
X . (295)

Step 5. We compute from the cumulants κ(1)Y , . . . , κ
(n)
Y the non-central momentseµ(1)Y , . . . , eµ(n)Y of Y . To do so, we use recursively the identity

eµ(n)Y = κ
(n)
Y +

n−1X
k=1

¡
n−1
k−1
¢
κ
(k)
Y eµ(n−k)Y , (296)

which follows from applying (291) to Y and rearranging the terms.
- Step 6. We compute from the non-central moments eµ(1)Y , . . . , eµ(n)Y the central
moments µ(1)Y , . . . , µ

(n)
Y of Y . To do so, see Exercise 1.1.7.

- Step 7. We compute from the central moments µ(1)Y , . . . , µ
(n)
Y the standardized

summary statistics
µY , σY , skY , kuY , γ

(5)
Y , . . . , γ

(n)
Y (297)

of the projected multi-period invariant Y , by applying to Y the definitions
(280)-(284).
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5.2 Multivariate square-root rule

This exercise is discussed in greater depth and placed into a broader context in
Meucci (2010g), freely available online at ssrn.com.Scatter-plot the differences
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Figure 5: Swap rate changes are approximately invariants

over a time eτ = one day of the two-year versus the ten-year point of the swap
curve from the database DB_swaps.
Compute the sample covariance eΣ between these two series. Next, repre-

sent geometrically eΣ by means of its location dispersion ellipsoid, which is the
smallest ellipsoid in Figure 5.
Then consider the empirical covariance Σ at different horizons of τ = one

week and τ = one month respectively. Represent all of these covariances by
means of their location-dispersion ellipsoids, which we plot in the figure as solid
red lines.
Finally compare these ellipsoids with the suitable multiple eΣτ/eτ as in As in

(3.76) in Meucci (2005)
of the daily ellipsoid, which we plot as dashed ellipsoids.
See from the figure that the solid and the dashed ellipsoids are comparable

and thus the swap rate changes are approximately invariants: the volatilities
increase according to the square-root rule and the correlation is approximately
constant.

See the script S_MultiVarSqrRootRule.

.
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5.3 Stable invariants

Assume that the distribution of the market invariants at the estimation horizoneτ is multivariate Cauchy
Xτ ∼ Ca (µ,Σ) . (298)

Assume that the invariants satisfy the "accordion" property (3.60) in Meucci
(2005).
Prove that the distribution of the market invariants at any generic invest-

ment horizon τ is Cauchy.
Hint. Like the normal distribution, the Cauchy distribution is stable. Use

the characteristic function (2.210) in Meucci (2005) to represent this distribution
at any horizon.
Draw your conclusions on the propagation law of risk in terms of the modal

dispersion (2.212) in Meucci (2005).
Hint. Notice that the covariance is not defined.

From (3.64) and (2.210) in Meucci (2005) we obtain:

φτ (ω) = (φτ (ω))
τ
τ (299)

=
³
eiω

0µ−
√
ω0Σω

´ τ
τ

= eiω
0µ τ

τ− ω0Σ( ττ )
2
ω.

Therefore

Xτ ∼ Ca
µ
τeτ µ, τ2eτ2Σ

¶
. (300)

In particular, from (2.212) we obtain

MDisτ {X} =
τ2eτ2 MDisτ {X} (301)

Therefore, the propagation law for risk is linear in the horizon, instead of being
proportional to the square root of the horizon.

5.4 Equities

5.4.1 Random walk (linear vs. compounded returns)

This exercise is discussed in greater depth and placed into a broader context in
Meucci (2010d), freely available online at ssrn.com.
Assume that the compounded returns (3.11) in Meucci (2005) of a given stock

are market invariants, i.e. they are i.i.d. across time. Consider an estimation
interval of one week eτ ≡ 1/52 (time is measured in years). Assume that the
distribution of the returns is normal:

Ct,τ ∼ N
¡
0, σ2eτ¢ , (302)
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Figure 6: Linear and compounded return difference increases with investment
horizon

where
√
σ2 ≡ 0.4. Assume that the stock currently trades at the price PT ≡ 1.

Fix a generic horizon τ .
Compute and plot the analytical pdf of the price PT+τ .

See the script S_EquityProjectionPricing and S_LinVsLogReturn.
As in (3.74) in Meucci (2005)

Ct,τ ∼ N
¡
0, σ2τ

¢
. (303)

Therefore, as in (3.87)-(3.88)-(3.92) in Meucci (2005)

PT+τ ∼ LogN
¡
ln (PT ) , σ

2τ
¢
. (304)

The pdf follows from (1.95) in Meucci (2005).

.
Simulate the compounded return at the investment horizon and map these

simulations into simulations of the price PT+τ at the generic horizon τ .
Superimpose the rescaled histogram from the simulations of PT+τ to show

that they coincide.
Hint. Use (T1.43) in the technical appendix at symmys.com > Book >

Downloads for the rescaling.
Compute analytically the distribution of the first-order Taylor approxima-

tion of the pricing function around zero and superimpose this pdf to the above
plots. Notice how the approximation is good for short horizons and bad for long
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horizons.

See the script S_EquityProjectionPricing.
The first order Taylor approximation reads:

PT+τ = PT e
CT+τ,τ (305)

≈ PT (1 + CT+τ,τ )

= PT + PTCT+τ,τ .

Therefore from (303) we obtain:

PT+τ ∼ N
¡
PT , P

2
Tσ

2τ
¢
. (306)

5.4.2 Multivariate GARCH

This exercise is discussed in greater depth and placed into a broader context in
Meucci (2010b), freely available online at ssrn.com.
Upload the daily prices time series of a set of stocks from the database

DB_Equities.mat. Define the k-period compounded return

X
(k)
t ≡ ln (Pt+k −Pt) , (307)

where Pt are the prices at time t of the securities, see (3.11) in Meucci (2005)
Assume a diagonal-vech GARCH(1,1) process for the one-period compounded

returns
X
(1)
t = µ+ U

p
Ht²t. (308)

In this expression U
√
S denotes the upper triangular Cholesky decomposition of

the generic symmetric and positive matrix S; �t are normal invariants

²t ∼ N(0, I) ; (309)

and the scatter matrix Ht has the following dynamics

Ht = C+A ◦Σt−1 +B ◦Ht−1, (310)

where ◦ is the element-by-element Hadamard product and

Σt ≡
³
X
(1)
t − µ

´³
X
(1)
t − µ

´0
. (311)

Estimate the parameters (µ,C,A,B) we use the methodology in Ledoit,
Santa-Clara, Wolf (2003) "Flexible multivariate GARCH modeling with an ap-
plication to international stock markets", Review of Economics and Statistics
85, 735-747.
Then use the estimated parameters to simulate the distribution of the T -day

linear return.
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See the script S_ProjectNPriceMvGARCH.m.
Assume it is now time t = 0. We are interested in the T -horizon compounded

return

X
(T )
0 =

TX
t=1

X
(1)
t = Tµ+

TX
t=1

U
p
Ht²t (312)

We use Monte Carlo scenarios to represent this distribution, proceeding as fol-
lows.
First, we generate J independent scenarios for ²1 from the multivariate dis-

tribution (309). For each scenario we generate a return scenario for the first
period return X(1)

1 according to (308), i.e.

X
(1)
1 = µ+ U

p
H1�1. (313)

where the matrix H1 is an outcome of the above estimation step. Then for each
scenario we update the next-step scatter matrixH2 according to (310). Next, we
generate J independent scenarios for ²2 from the multivariate distribution (309)
and we generate return scenarios for the second-period returns X(1)

2 according
to (308). We proceed iteratively until the scenarios for all the entries in (312)
have been generated.
Then the linear return distribution follows from the pricing equation R =

eX − 1.

5.5 Fixed income

5.5.1 Normal invariants

Assume that the weekly changes in yield to maturity are fully codependent, i.e.
co-monotonic. In other words, assume that the copula of any pairs of weekly
yield changes is (2.106) in Meucci (2005). Also, assume that they have the
following marginal distribution:

Y
(υ)
t − Y

(υ)
t−τ ∼ N

Ã
0,

µ
20 + 1.25υ

10, 000

¶2!
, (314)

where υ denotes the generic time to maturity (measuring time in years) and τ
is one week.
Restrict your attention to bonds with times to maturity 1, 5, 10, 52 and 520

weeks, and assume that the current yield curve, as defined in (3.30) in Meucci
(2005) is flat at 4%.
Produce joint simulations of the five bond prices at the investment horizon

τ of one week.
What are the analytical marginal distributions of the five bond prices at the

investment horizon τ of one week?
Produce joint simulations of the five bond linear returns from today to the

investment horizon τ of one week.
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What are the analytical marginal distributions of the five bond linear returns
at the investment horizon τ of one week?
Comment on why the return on the price of a bond cannot be an invariant.
Hints
1. Since the market is fully codependent you will only need one uniformly

generated sample
2. You will need the quantile function to generate simulations. Compute

the quantile function using interp1, the linear interpolation/extrapolation of
the cdf.
3. For a generic bond with time to maturity υ from the decision date T

the expiry date is E ≡ T + υ. As in (3.81) in Meucci (2005) the price at the
investment horizon of that bond reads:

Z
(T+υ)
T+τ = Z

(T+υ−τ)
T exp

³
− (υ − τ)∆τY

(υ−τ)
´
. (315)

In other words, the price is determined by the market invariant, a random
variable, and the known price of a different bond with shorter time to maturity.
4. The distribution of the 4-week-to-maturity bond at the 4-week-horizon is

degenerate, i.e. its pdf is the Dirac delta, because the outcome is deterministic.
Make sure that your outcome is consistent with this statement.
5. See hints for Exercise 5.5.2

See the script S_BondProjectionPricingNormal.
From (315) the bond price reads

Z
(T+υ)
T+τ = eX , (316)

where
X ≡ ln

³
Z
(T+υ−τ)
T

´
− (υ − τ)∆τY

(υ−τ). (317)

From (314)
∆τY

(υ) ∼ N
¡
0, σ2υ

¢
, (318)

where

σ2υ ≡
µ
20 + 1.25υ

10, 000

¶2
. (319)

Therefore
X ∼ N

³
ln
³
Z
(T+υ−τ)
T

´
, (υ − τ)2 σ2υ−τ

´
, (320)

which with (316) implies

Z
(T+υ)
T+τ ∼ LogN

³
ln
³
Z
(T+υ−τ)
T

´
, (υ − τ)

2
σ2υ−τ

´
. (321)

From (3.10) in Meucci (2005) the linear return from the current time T to
the investment horizon T + τ of a bond that matures at E ≡ T +υ is defined as

L
(T+υ)
T+τ,τ ≡

Z
(T+υ)
T+τ

Z
(T+υ)
T

− 1. (322)
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Proceeding as above
LT+τ,τ = eY − 1, (323)

where
Y ≡ ln

³
Z
(T+υ−τ)
T

´
− ln

³
Z
(T+υ)
T

´
− (υ − τ)∆τY

(υ−τ), (324)

and thus

1 + L
(T+υ)
T+τ,τ ∼ LogN

³
ln
³
Z
(T+υ−τ)
T

´
− ln

³
Z
(T+υ)
T

´
, (υ − τ)

2
σ2υ−τ

´
, (325)

or L(T+υ)T+τ,τ is a shifted lognormal random variable.
Notice that for υ ≡ τ the above distribution is degenerate, i.e. deterministic,

whereas any estimation would have yielded a non-degenerate distribution.

5.5.2 Student t invariants

Consider a fixed-income market, where the changes in yield-to-maturity, or rate
changes, are the market invariants.
Assume that the weekly changes in yield for all maturities are fully codepen-

dent, i.e. co-monotonic. In other words, assume that the copula of any pairs
of weekly yield changes is (2.106) in Meucci (2005). Assume that the marginal
distributions of the weekly changes in yield for all maturities are:

∆τY
(υ) ∼ St

¡
ν, µ, σ2υ

¢
. (326)

In this expression υ denotes the time to maturity (in years) and

ν ≡ 8, µ ≡ 0,
p
σ2υ ≡

µ
20 +

5

4
υ

¶
× 10−4. (327)

Consider bonds with current times to maturity 4, 5, 10, 52 and 520 weeks, and
assume that the current yield curve, as defined in (3.30) in Meucci (2005) is flat
at 4% (measuring time in years).
Use the function ProjectionT that takes as inputs the estimation parame-

ters of the t-distributed invariants and the horizon-to-estimation ratio τ/eτ to
compute the cdf of the invariants at the investment horizon τ . You do not
need to know how this function works. Make sure you properly compute the
necessary inputs (see hints below).
Use the cdf obtained above to generate a joint simulation of the bond prices

at the investment horizon τ of four weeks.
Plot the histogram of the linear returns LT+τ,τ of each bond over the in-

vestment horizon, where the linear return is defined consistently with (3.10) in
Meucci (2005) as follows:

Lt,τ ≡
Z
(E)
t

Z
(E)
t−τ
− 1. (328)

Notice that the long-maturity (long duration) bonds are much more volatile
than the short maturity (short duration) bonds.
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Hints
Suppose today is Nov.1 2006 and we hold a zero-coupon bond that matures

in 10 weeks, i.e., it matures on Jan.15. 2007.
We are interested in the value of the bond after 4 weeks, i.e., Dec.1 2006.
Recall from (3.30) in Meucci (2005) that the value of a zero-coupon bond is

fully determined by its yield to maturity.
At the 4-week investment horizon (Dec.1 2006) our originally 10-week bond

will be a 6-week bond. Therefore its price will be fully determined by the value
of the 6-week yield to maturity on Dec.1 2006. For instance, if the 6-week
yield to maturity on Dec.1 2006 is 4.1%, then in (3.30) we have υ ≡ 6/52 and
Y
(6/52)
12/1/2006 ≡ 0.041. Therefore the bond price on Dec.1 2006 will be:

Z
1/15/2007
12/1/2006 = exp

µ
− 6
52

Y
(6/52)
12/1/2006

¶
(329)

= e−
6
52×0.041 ≈ 0.99528.

To summarize, in order to price the 10-week bond at the 4-week investment
horizon we need the distribution of the 6-week yield to maturity on Dec.1 2006.
In order to proceed, we recall that in the zero-coupon bond world, the in-

variants are the non-overlapping changes in yield to maturity, for any yield to
maturity, see the textbook from pp.109 to pp.113. In particular, from (3.31) in
Meucci (2005), the following four random variables are i.i.d.:

X1 ≡ Y
(6/52)
11/08/2006 − Y

(6/52)
11/1/2006 (330)

X2 ≡ Y
(6/52)
11/15/2006 − Y

(6/52)
11/08/2006 (331)

X3 ≡ Y
(6/52)
11/22/2006 − Y

(6/52)
11/15/2006 (332)

X4 ≡ Y
(6/52)
12/1/2006 − Y

(6/52)
11/22/2006 (333)

Notice that we can express the random variable Y (6/52)
12/1/2006 in (329) as follows:

Y
(6/52)
12/1/2006 = Y

(6/52)
11/1/2006 +X1 +X2 +X3 +X4. (334)

Substituting this in (329) we obtain

Z
1/15/2007
12/1/2006 = e

− 6
52 Y

(6/52)
11/1/2006

+X1+X2+X3+X4 (335)

= Z
12/15/2006
11/1/2006 e−6/52(X1+X2+X3+X4),

where in the last row we used (3.30) in Meucci (2005) again. This expression is
(315).
The term Z

12/15/2006
11/1/2006 is the current value of a 6-week zero-coupon bond,

which is known. Indeed, using the information that the curve is currently flat
at 4% we obtain:

Z
12/15/2006
11/1/2006 = e

− 6
52Y

(6/52)
11/1/2006 = e−

6
52×0.04 ≈ 0.99540. (336)
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We are left with the problem of projecting the invariant, i.e. computing the
distribution of X1+X2+X3+X4, and pricing it, i.e. computing the distribution
of e−6/52(X1+X2+X3+X4) in (335).
To project the invariant we need to compute the distribution of the sum four

independent t variables

X1
d
= X2

d
= X3

d
= X4 ∼ St

³
ν, µ, σ26/52

´
, (337)

where the parameters follow from (326). This is the FFT algorithm provided in
ProjectionT. The pricing is then performed by Monte Carlo simulations.
As for the linear returns, these are the return on our bond over the invest-

ment horizon. Therefore (328) reads:

L12/1/2006, 452 ≡
Z
(1/15/2007)
12/1/2006

Z
(1/15/2007)
11/1/2006

− 1. (338)

See the script S_BondProjectionPricingT.

5.6 Derivatives

Consider a market of call options on the S&P 500, with current time to maturity
of 100, 150, 200, 250, and 300 days and strikes equal 850, 880, 910, 940, and
970 respectively. Assume that the investment horizon is 8 weeks.
Consider the time series of the underlying and the implied volatility surface

provided in DB_ImplVol. Fit a joint normal distribution to the weekly invari-
ants, namely the log-changes in the underlying and the residuals from a vector
autoregression of order one in the log-changes in the implied volatilities surface
σt. µ

lnSt+τ − lnSt
lnσt+τ − lnσt

¶
∼ N(τµ, τΣ) (339)

Hint. See Exercise 3.2.3: here we are assuming for simplicity that the invariants
are the log-changes in the implied volatility surface instead of the the residu-
als from a vector autoregression of order one on the same variables. Notice
how (339) represents a special case of Exercise 3.2.3, which we assume here for
simplicity.
Generate simulations for the invariants and jointly project underlying and

implied volatility surface to the investment horizon.
Price the above simulations through the full Black-Scholes formula at the

investment horizon, assuming a constant risk-free rate at 4%.
Hint. You need to interpolate the surface at the proper strike and time to
maturity, which at the horizon has shortened.
Compute the joint distribution of the linear returns of the call options, as

represented by the simulations: the current prices of the options can be obtained
similarly to the prices at the horizon by assuming that the current values of
underlying and implied volatilities are the last observations in the database.
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For each call option, plot the histogram of its distribution at the horizon
and the scatter-plot of its distribution against the underlying.
Verify what happens as the investment horizon shifts further in the future.

See the script S_CallsProjectionPricing.

6 Dimension reduction

6.1 "Pure residual" models: duration/curve attribution

This exercise is discussed in greater depth and placed into a broader context in
Meucci (2010f), freely available online at ssrn.com.
Consider as market Xt the weekly linear returns of N ≡ 3 bonds, net of

the "carry", or "roll-down", i.e. the deterministic component as in (3.108) and
comments thereafter in Meucci (2005). Consider as exogenous factors Ft the
weekly changes in K ≡ 9 key rates of the government curve: 6 months, one year,
2, 3, 5, 7 10, 20 and 30 years. Consider as exogenous loadings Bt the key rate
durations of these bonds, where Bt is a N ×K = 3× 9 matrix.
Consider the pure residual factor model

Xt ≡ BtFt +Ut. (340)

Find in the database db_BondAttribution the time series over the year 2009
of the above variables. Model the joint distribution of the yet-to-be realized
factors and residuals by means of the empirical distribution

fFT+!,UT+!
≡ 1

T

TX
t=1

δ(ft,ut), (341)

see (4.35) in Meucci (2005).
Compute the correlation among residuals and between factors and residuals

according to the empirical distribution (341) and verify that (340) is not a
systematic-plus-idiosyncratic model, see Figure 7.

See script S_PureResidualBonds

6.2 "Time series" or "macroeconomic" factor models

6.2.1 Unconstrained time series correlations and r-square

This exercise is discussed in greater depth and placed into a broader context in
Meucci (2010f), freely available online at ssrn.com.
Consider the approximation Y provided to the market X by a given model

X ≡ Y +U, (342)
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Figure 7: Pure residual model typical in fixed-income is not-systematic plus-
idiosyncratic

where U is the residual that the model fails to approximate. To evaluate the
goodness of a model, we introduce the generalized r-square as in Meucci (2010f)

R2W {Y,X} ≡ 1− tr (Cov {W (Y −X)})
tr (Cov {WX}) . (343)

Consider now a linear factor model

Y ≡ BF (344)

where the factors F are imposed exogenously. Then each choice of B gives rise
to a different model
Determine analytically the expressions for the optimal B that maximize the

r-square (343). Then compute the residuals U. Are the residuals correlated
with the factors F? Are the residuals idiosyncratic?
What is the r-square provided by the optimal optimal B?

The solution reads

B∗ ≡ Cov {X,F}Cov {F}−1 , (345)

The residuals and the factors are uncorrelated but the residuals are not idio-
syncratic because their correlations with each other are not null. The r-square
provided by the model with loadings (345) is

R2W =
tr
³
Cov {WX,F}Cov {F}−1Cov {F,WX}

´
tr (Cov {WX}) . (346)

See all the proofs in Meucci (2010f).
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6.2.2 Unconstrained time series industry factors

This exercise is discussed in greater depth and placed into a broader context in
Meucci (2010f), freely available online at ssrn.com. Also, compare with Exercise
6.2.1 and Exercise 6.2.3.
Consider the n = 1, . . . , N ≈ 500 stocks in the S&P 500 and the k =

1, . . . ,K ≡ 10 industry indices. We intend to build a factor model

X = a+BF+U, (347)

where X ≡ (X1, . . . ,XN )
0 are the yet to be realized returns of the stocks over

next week; a ≡ (a1, . . . , aN )0 are N constants; F ≡ (F1, . . . , FK)0 are the factors,
i.e. the yet to be realized returns of the industry indices over next week; B is a
N ×K matrix of coefficients that transfers the randomness of the factors into
the randomness of the risk drivers; and U ≡ (U1, . . . , UN )0 are defined as the N
residuals that make (347) an identity.
Upload the database of the weekly stock returns {xt}t=1,...,T , and the data-

base of the simultaneous weekly indices returns {ft}t=1,...,T . Model the joint
distribution of X and F by means of the empirical distribution

fX,F ≡
1

T

TX
t=1

δ(xt,ft), (348)

where δ(y) denotes the Dirac-delta, which concentrates a unit probability mass
on the generic point y.
Compute the optimal loadings B∗ in (347) that give the factor model the

highest generalized multivariate distributional r-square as in Meucci (2010f)
(you will notice that the weights are arbitrary)

B∗ ≡ argmax
B

R2W {BF,X} . (349)

Compute the correlations of the residuals with the factors and verify that it is
null. Then compute the correlations of the residuals with each other and verify
that it is not null, i.e. the residuals are not idiosyncratic.
Hint: the optimal loadings turn out to be the standard multivariate OLS,

see the proof in Meucci (2010f).

See script S_TimeSeriesIndustries

6.2.3 Generalized time-series industry factors

This exercise is discussed in greater depth and placed into a broader context in
Meucci (2010f), freely available online at ssrn.com. Consider the same frame-
work as in Exercise 6.2.2. Compute as in that exercise the optimal loadings B∗

in (347) that give the factor model the highest constrained generalized multi-
variate distributional r-square defined in Meucci (2010f)

B∗ ≡ argmax
B∈C

R2W {BF,X} . (350)
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In this expression, assume that the constraints C are the following: all the load-
ings are bound from below by B ≡ 0.8 and from above by B ≡ 1.2 and the
market-capitalization weighted sum of the loadings be one

0.8 ≤ Bn,k ≤ B, n = 1, . . . ,N, k = 1, . . . ,K (351)
NX
n=1

MnBn,k ≡ 1. (352)

Proxy the market capitalization as equal weights for this exercise.
Then compute the correlations of the residuals among each other and with

the factors and verify that neither is null. In other words, the model is not of
systematic-plus-idiosyncratic type.

See script S_TimeSeriesConstrainedIndustries

6.2.4 Analysis of residual

Consider a market of N stocks, where each stock n = 1, . . . , N trades at time t
at the price Pt,n. Consider as interpretation factors the linear returns on a set
of K indices, such as GICS sectors, where each index k = 1, . . . ,K quotes at
time t at the price St,k.
As in Black-Scholes, assume that stocks and indices follow a geometric

Brownian motion, i.e.µ
X
F

¶
∼ N

µ
τ

µ
µX
µF

¶
, τ

µ
ΣX ΣXF

Σ0XF ΣF

¶¶
, (353)

where

Xn ≡ ln

µ
PT+τ,n
PT,n

¶
(354)

Fk ≡ ln

µ
ST+τ,k
ST,k

¶
. (355)

We want to represent the linear returns on the securities

R = eX − 1 (356)

in terms of the explanatory factors

Z = eF − 1 (357)

by means of a linear model
R ≡ BZ+U. (358)

Compute the expression of B that minimizes the generalized r-square, the
expression of the covariance ΣZ of the explanatory factors and the expression
of the covariance ΣU of the residuals.
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From (3.121) the optimal loadings read:

B ≡ E
©
RZ0

ª ¡
E
©
ZZ0

ª¢−1
. (359)

Also from (2.219)-(2.220) in general for a log-normal variable

Y ∼ LogN (µ,Σ) . (360)

then

E {Y} = eµ+
1
2 diag(Σ). (361)

E
©
YY0ª =

³
e(µ+

1
2 diag(Σ))e(µ+

1
2 diag(Σ))0

´
◦ eΣ, (362)

where ◦ denotes the term-by-term Hadamard product.
Since

1 +

µ
R
Z

¶
∼ LogN

µ
τ

µ
µX
µF

¶
, τ

µ
ΣX ΣXF

Σ0XF ΣF

¶¶
, (363)

using (361), (362) and the property

E {(Y − 1)} = E {Y}− 1 (364)

E
©
(Y − 1) (Y − 1)0

ª
= E

©
YY0ª+ 110 − E©Y10ª− E©1Y0ª . (365)

we can easily compute all the terms E {R}, E
©
RR0ª, E {Z}, E©ZZ0ª and

E
©
RZ0

ª
.

Therefore we obtain the loadings (359). The covariance of the explanatory
factors then follows from

ΣZ = E
©
ZZ0

ª
− E {Z}E {Z0} (366)

and similarly the covariance of the returns follows from

ΣR = E
©
RR0ª− E {R}E {R0} (367)

Generate randomly the parameters of the distribution (353). Then generate
a large number of Monte Carlo scenarios from (353) and verify that the sample
covariances of explanatory factors and linear returns match with (366) and (367).
Estimate the loadings by OLS of the Monte Carlo simulations i.e. the sample

counterpart of (359). Compute the residuals, and their sample covariance bΣR

and verify that bΣR is not diagonal and thatbΣR 6= bBbΣZ
bB0 + bΣU . (368)

Now repeat the experiment assuming that one of the factor is non-random,
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by setting the respective volatility to zero in (353) and verify that

bΣR ≡ bBbΣZ
bB0 + bΣU . (369)

In this case the most explanatory interpretation reads

R ≡ a+BZ+U, (370)

where the OLS loadings are

B ≡ ΣRZΣ
−1
ZZ (371)

and
a ≡ E {R}−BE {Z} (372)

See script S_ResidualAnalysisTheory

Now repeat the experiment assuming that all the factors are random, but
enforcing E {Z} ≡ 0 by suitably setting the drift µF in (353) as a function of
the diagonal of ΣF and verify again thatbΣR ≡ bBbΣZ

bB0 + bΣU . (373)

See script S_ResidualAnalysisTheory

Important: notice that under no circumstance is the residual covariance
matrix bΣU diagonal. This issue is discussed in greater depth and placed into a
broader context in Meucci (2010f), freely available online at ssrn.com.

6.3 "Cross-section" or "fundamental" factor models

6.3.1 Unconstrained cross-section correlations and r-square

This exercise is discussed in greater depth and placed into a broader context in
Meucci (2010f), freely available online at ssrn.com.
Consider the approximation Y provided to the market X by a given model

X ≡ Y +U, (374)

where U is the residual that the model fails to approximate. To evaluate the
goodness of a model, we introduce the generalized r-square as in Meucci (2010f)

R2W {Y,X} ≡ 1− tr (Cov {W (Y −X)})
tr (Cov {WX}) . (375)

Consider now a linear factor model

Y ≡ BF (376)
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where the loadings B are exogenously chosen, but the factors F are left unspec-
ified. Then each choice of F gives rise to a different model. Assume that the
factors are a linear function of the market

F ≡GX. (377)

Determine analytically the expressions for the optimal G that maximize the
r-square (375). Then compute the factors F, the explained market Y and the
residual U. Is the market Y explained by the factors orthogonal to the residual
U? Is the explained market Y correlated with the residual U? Are the residual
idiosyncratic?

The solution reads
G∗ = (B0ΦB)

−1
B0Φ, (378)

where Φ ≡W0W. Then r-square provided by this solution reads

R2W =
tr (Cov {WBF})
tr (Cov {WX}) , (379)

see the proof in Meucci (2010f).
With (378) the factors (377) read

F ≡ (B0ΦB)−1B0ΦX (380)

and the model-recovered market is

Y ≡ PX, (381)

where
P ≡ B (B0ΦB)−1B0Φ (382)

is a projection operator. Indeed, it is easy to check that P2 = P. The linear
assumption (377) gives rise to the residuals

U ≡ P⊥X, (383)

where
P⊥ ≡ I−B (B0ΦB)−1B0Φ (384)

is the projection in the space orthogonal to the span of the model-recovered
market. Therefore, the recovered market and the residuals live in orthogonal
spaces. However, the residuals and the factors are not uncorrelated and the
residuals are not idiosyncratic, see also the discussion in Meucci (2010f).

6.3.2 Unconstrained cross-section industry factors

This exercise is discussed in greater depth and placed into a broader context in
Meucci (2010f), freely available online at ssrn.com. Also, compare with Exercise
6.3.1 and Exercise 6.3.3.
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Consider the n = 1, . . . , N ≈ 500 stocks in the S&P 500 and the k =
1, . . . ,K ≡ 10 industry indices. We intend to build a factor model

X = a+BF+U, (385)

where X ≡ (X1, . . . ,XN )
0 are the yet to be realized returns of the stocks over

next week; a ≡ (a1, . . . , aN )0 are N constants; F ≡ (F1, . . . , FK)0 are the factors,
i.e. the yet to be realized random variables; B is a N ×K matrix of coefficients
that transfers the randomness of the factors into the randomness of the risk
drivers and that is imposed exogenously; and U ≡ (U1, . . . , UN )0 are defined as
the N residuals that make (347) an identity.
Upload the database of the matrixB of dummy exposures of each stock to its

industry. Upload the weekly stock returns {xt}t=1,...,T . Model the distribution
of X by means of the empirical distribution

fX ≡
1

T

TX
t=1

δ(xt), (386)

where δ(y) denotes the Dirac-delta, which concentrates a unit probability mass
on the generic point y.
Define the cross-sectional factors as linear transformation of the market F ≡

GX. Compute the optimal coefficientsG∗ that give the factor model the highest
generalized multivariate distributional r-square defined in Meucci (2010f)

G∗ ≡ argmax
G

R2W {BGX,X} , (387)

In this expression assume that the r-square weights matrix W to be diagonal
and equal to the inverse of the standard deviation of each stock return.
Then compute the correlations of the residuals among each other and with

the factors and verify that neither is null. In other words, the model is not of
systematic-plus-idiosyncratic type.
Hint: the optimal loadings turn out to be the standard multivariate weighted-

OLS, see the proof in Meucci (2010f).

See script S_CrossSectionIndustries

6.3.3 Generalized cross-section industry factors

This exercise is discussed in greater depth and placed into a broader context in
Meucci (2010f), freely available online at ssrn.com. Consider the same frame-
work as in Exercise 6.3.2.
Compute similarly to (387) the optimal coefficients G∗ that give the cross-

sectional industry factors the highest generalized multivariate distributional r-
square defined in Meucci (2010f), but, unlike in Exercise 6.3.2, add a set of
constraints C

G∗ ≡ argmax
B∈C

R2W {BGX,X} . (388)
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In this expression, assume that the constraints C are that the factors F ≡ GX
be uncorrelated with the overall market

C : GCov {X}m ≡ 0, (389)

where you can assume the market weightsm to be equal weights for this exercise.
Then compute the correlations of the residuals among each other and with

the factors and verify that neither is null. In other words, the model is not of
systematic-plus-idiosyncratic type.

See script S_CrossSectionConstrainedIndustries

6.3.4 Comparison cross-section with time-series industry factors

This exercise is discussed in greater depth and placed into a broader context
in Meucci (2010f), freely available online at ssrn.com. Consider the time-series
industry factors constructed in Exercise 6.2.2 and the cross-section industry
factors constructed in Exercise 6.3.2. Verify that the time series factors are
highly correlated with their cross-sectional counterparts.

See script S_TimeSeriesVsCrossSectionIndustries in the "cross-section"
folder.

6.3.5 Correlation factors-residual: normal example

This exercise is discussed in greater depth and placed into a broader context in
Meucci (2010f), freely available online at ssrn.com.
Consider an N -dimensional normal market

X ∼ N(µ,Σ) , (390)

and assume that we want to explain it through a linear model

X ≡ bF +U, (391)

where b is a given vector of loadings, F is a yet-to-be defined explanatory factor,
and U are residuals that make (391) hold.
Choose N and generate arbitrarily the parameters in (390) and the vector

of loadings in (391). Then generate a large number of simulations from (390).
Define the factor F through cross-sectional regression and compute the residuals
U. Then show that factor and residual are correlated:

Cor {F,U} 6= 0. (392)

See script S_FactorResidualCorrelation
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6.4 "Statistical" approach: principal component analysis

6.4.1 Matrix algebra

Consider a N ×N matrix of the form

Σ ≡ EΛE0, (393)

where Λ is diagonal and E is invertible.
Prove that Σ is symmetric, see definition (A.51) in Meucci (2005).

Σ0 ≡
¡
EΛE0

¢0
= EΛ0E0 = EΛE0 = Σ (394)

Prove that Σ is positive if and only if all the diagonal elements of Λ are
positive, see definition (A.52) in Meucci (2005).

For any v there exists one and only one w ≡ E0v and w ≡ 0 ⇐⇒ v ≡ 0.
Assume that all the diagonal elements of Λ are positive and v 6= 0. Then:

v0Σv ≡ v0EΛE0v = w0Λw (395)

=
NX
n=1

w2nλn > 0.

Similarly, from the above identities, if 0 < v0Σv for any v 6= 0, then each λn
has to be positive.

6.4.2 Location-dispersion ellipsoid and geometry

Consider the ellipsoid

Em,S ≡
©
x ∈ RN such that (x−m)0 S−1 (x−m) ≤ 1

ª
. (396)

What is the geometrical interpretation of m?
What is the geometrical interpretation of the eigenvectors of S?
What is the geometrical interpretation of the eigenvalues of S?
What is the statistical interpretation of (396)?
Hint. This is a trick question.

The vector m represents the center of ellipsoid.
The eigenvectors are the directions of the principal axes of the ellipsoid.
The square root of the eigenvalues are the length of the principal axes of the

ellipsoid.
There is no statistical interpretation, as long asm and S are not the expected

value and the covariance matrix respectively of a multivariate distribution.
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6.4.3 Location-dispersion ellipsoid and statistics

Generate J ≡ 10, 000 simulations from a bi-variate log-t variable:

ln (X) ∼ St (ν,µ,Σ) . (397)

where ν ≡ 40, µ ≈ 0.5 and diag (Σ) ≈ 0.01 (you can choose the off-diagonal
element).
Hint. You will have to shift and rescale the output of mvtrnd.
Consider the generic versor in the plane:

eθ ≡
µ
cos θ
sin θ

¶
. (398)

Consider the random variable Zθ ≡ e0θX, namely the projection of X on the
direction eθ. Compute and plot the sample standard deviation σθ of Zθ as a
function of θ ∈ [0, π] (select a grid of 100 points).
Show in a figure that the minimum and the maximum of σθ are provided by

versors parallel to the principal axes of the ellipsoid defined by the sample mean
m and the sample covariance S as plotted by the function TwoDimEllipsoid.
Compute the radius rθ, i.e. the distance between the surface of the ellipsoid

and the center of the ellipsoid along the direction of the versor as a function of
θ ∈ [0, π] (select a grid of 100 points).
Hint. To compute rθ notice that it satisfies:

(rθeθ)
0 S−1 (rθeθ) = 1. (399)

In a separate figure superimpose the plot of σθ and the plot of rθ, showing
that the minimum and the maximum of σθ (i.e. the minimum and the maximum
volatility), correspond to the the minimum and the maximum of rθ respectively
(i.e. the length of the smallest and largest principal axis). Notice that the radius
equals the standard deviation only on the principal axes.

See the script S_MaxMinVariance.

6.4.4 PCA derivation, correlations and r-square

This exercise is discussed in greater depth and placed into a broader context in
Meucci (2010f), freely available online at ssrn.com.
Consider the approximation Y provided to the market X by a given model

X ≡ Y +U, (400)

where U is the residual that the model fails to approximate. To evaluate the
goodness of a model, we introduce the generalized r-square as in Meucci (2010f)

R2W {Y,X} ≡ 1− tr (Cov {W (Y −X)})
tr (Cov {WX}) . (401)
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Consider now a linear factor model

Y ≡ BF (402)

where the factors are extracted by linear combinations from the market

F ≡GX (403)

Then each choice of B and G gives rise to a different model Y. Determine
analytically the expressions for the optimal B and G that maximize the r-
square (401) and verify that they are the principal components of the matrix
Cov {WX}. What is the r-square provided by the optimal optimal B and G?
Then compute the residuals U. Are the residuals correlated with the factors F?
Are the residuals idiosyncratic?

First, we perform the spectral decomposition of the covariance matrix

Cov {WX} ≡ EΛE0. (404)

In this expressionΛ is the diagonal matrix of the decreasing, positive eigenvalues
of the covariance:

Λ ≡ diag
¡
λ21, . . . , λ

2
N

¢
; (405)

and E is the juxtaposition of the respective eigenvectors, which are orthogonal
and of length 1 and thus EE0 = IN :

E ≡
³
e(1), . . . , e(N)

´
, (406)

Next, we define a N ×K matrix as the juxtaposition of the first K eigenvectors

EK ≡
³
e(1), . . . , e(K)

´
. (407)

Then optimal B and G read

B∗ =W−1EK , G∗ ≡ E0KW. (408)

The r-square (387) provided by the principal component solution (408) reads

R2W =

PK
k=1 λ

2
kPN

n=1 λ
2
n

. (409)

The residuals are not correlated with the factors F but they are correlated with

each other and therefore they are not idiosyncratic. See all the proofs in Meucci
(2010f).

76



6.4.5 PCA and projection

Prove that the PCA-recovered market (3.160) in Meucci (2005) represents the
orthogonal projection of the original market onto the hyperplane generated by
the first K eigenvectors stemming from the expectation of the original market.

See the Technical Appendix www.3.5.

6.4.6 PCA of two-point swap curve

Upload the database DB_Swap2y4y of the 2yr and 4yr daily par swap rates.
Plot the "current curve" i.e. the rates at the last observation date as func-

tions of the respective maturities ("points on the curve").
Find the two invariants for the two rate series for a weekly estimation horizon

(one week = five days). Use the RunAnalysis test.
Scatter plot the time series of one invariant against the time series of the

other invariant.
Superimpose the two-dimensional location-dispersion ellipsoid determined

by sample mean and sample covariance of the invariants (set the scale factor
equal to 2): you should see a highly elongated ellipsoid.
Perform the spectral decomposition of the sample covariance of the invari-

ants.
Plot the two entries of the first eigenvector (first factor loadings) as a function

of the respective points on the curve.
Superimpose the plot of the two entries of the second eigenvector (second

factor loadings) as a function of the respective points on the curve.
Compute and plot a one-standard-deviation effect and a minus-one-standard-

deviation effect of the first factor on the current curve as in the case study in
the textbook.
Compute and plot a one-standard-deviation effect and a minus-one-standard-

deviation effect of the second factor on the current curve, as in the case study
in the textbook.
Compute the generalized R2 provided by the first factor.
Compute the generalized R2 provided by both factors.

See the script S_SwapPCA2Dim.

6.4.7 Eigenvectors for Toeplitz structure

Write a script that generates a N × N Toeplitz matrix with structure as in
(3.209)-(3.214)-(3.222) in Meucci (2005), i.e.

Sj,j+k ≡ r|k|, (410)

where 0 < r < 1.
Hint. Use the command diag.
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Show in a figure that the eigenvectors have a Fourier basis structure as in
(3.217) in Meucci (2005).

See the script S_Toepliz.

6.4.8 Generalized principal component analysis

This exercise is discussed in greater depth and placed into a broader context in
Meucci (2010f), freely available online at ssrn.com. Also, compare with Exericse
6.2.4. ???

6.5 "Statistical" approach: factor analysis puzzle

This exercise is discussed in greater depth and placed into a broader context
in Meucci (2010f), freely available online at ssrn.com, to which we refer for the
explanation of the puzzle below.
Consider a N -dimensional market that is normally distributed

X ∼ N(µ,Σ) , (411)

Choose an arbitrary dimension N and generate µ arbitrarily. Then generate Σ
as follows

Σ ≡ BB0 +∆2 (412)

where B is an arbitrary matrix N × K, with K < N and ∆2 is an arbitrary
diagonal matrix.
Generate a large number of scenarios {xj}j=1,...,J from the distribution (411)

with matching sample first and second moment bµ and bΣ, as in Exercise 1.2.3.
Run the built-in MATLAB function factoran, which outputs the estimated

values of bB and b∆ as well as the hidden factors {fj}j=1,...,J .
Verify that the factor analysis routine works well, i.e.

bΣ ≡ bBbB0 + b∆2. (413)

Compute the residuals uj ≡ xj −Bf j and their sample covariance.
Verify that the residuals are not idiosyncratic, in contradiction with the very

principles of factor analysis.

See the script S_FactorAnalysisNotOK.

6.6 "Factors on Demand"

6.6.1 Horizon effect

This exercise is discussed in greater depth and placed into a broader context in
Meucci (2010c) and Meucci (2010b), both freely available online at ssrn.com.
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Consider as in Exercise 6.2.4 a market of N stocks, where each stock n =
1, . . . ,N trades at time t at the price Pt,n. Consider as interpretation factors
the linear returns on a set of K indices, such as GICS sectors, where each index
k = 1, . . . ,K quotes at time t at the price St,k.
As in Black-Scholes, assume that stocks and indices follow a geometric

Brownian motion, i.e.µ
X
F

¶
∼ N

µ
τ

µ
µX
µF

¶
, τ

µ
ΣX ΣXF

Σ0XF ΣF

¶¶
, (414)

where

Xn ≡ ln

µ
PT+τ,n
PT,n

¶
(415)

Fk ≡ ln

µ
ST+τ,k
ST,k

¶
. (416)

In particular, assume that the compounded returns are generated by the linear
model

X ≡ τµX +DF+ ², (417)

where D is a constant matrix of loadings,µ
F
²

¶
∼ N

µµ
0
0

¶
,

µ
τΣF 0
0 τΣ�

¶¶
, (418)

and Σ� is diagonal. Notice that (417)-(418) is a specific case of, and fully
consistent with, the more general formulation (414). The specification (417) is
the "estimation" side of the model, i.e. the model that would be fitted to the
empirical observations.
We want to represent the linear returns on the securities

R = eX − 1 (419)

in terms of the explanatory factors

Z = eF − 1 (420)

by means of a linear model

R ≡ a+BZ+U. (421)

The specification (421) is the interpretation side of the model, i.e. the model
that would be used for portfolio management applications, such as hedging or
style analysis.
Upload µX, D, ΣF and Σ� from db_LinearModel and study the relation-

ship between the constant τµX in (417) and the intercept a in (421) and the
relationship between the loadings D in (417) and the loadings B in (421).
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See script S_HorizonEffect
In particular, in the simple bi-variate case and rescaling for simplicity such

that Pt = St = 1 the returns are shifted multivariate lognormalÃ
R
(t)
P

R
(t)
S

!
∼ LogN

µ
t

∙
µX
µF

¸
, t

∙
σ2X ρX,FσXσF

ρX,FσXσF σ2F

¸¶
− 1, (422)

We recall from (2.219)-(2.220) in Meucci (2005) that in general if

Y ∼ LogN (µ,Σ) . (423)

then

E {Y} = eµ+
1
2 diag(Σ). (424)

E
©
YY0ª =

³
e(µ+

1
2 diag(Σ))e(µ+

1
2 diag(Σ))0

´
◦ eΣ (425)

Also
Cov {Y} = E

©
YY0ª− E {Y}E {Y0} . (426)

From (3.127) in Meucci (2005) the beta in (421) simplifies as

β ≡
Cov

n
R
(t)
P , R

(t)
S

o
Var

n
R
(t)
S

o . (427)

Therefore

β =

³
eµXt+σ

2
Xt/2+µF t+σ

2
F t/2

´ ¡
eρX,FσXσF t − 1

¢
e2µF t+σ

2
F t
¡
eσ

2
F t − 1

¢ . (428)

Is U idiosyncratic?

It is not, and the longer the horizon, the more pronounced this effect, see
script S_HorizonEffect.

6.6.2 No-Greek hedging

This exercise is discussed in greater depth and placed into a broader context in
Meucci (2010c), see also Meucci (2010b), both freely available online at ssrn.com.
Consider the market of call options on the S&P 500 described in Exercise

5.6, namely call options on the S&P 500, with current time to maturity of
100, 150, 200, 250, and 300 days and strikes equal 850, 880, 910, 940, and 970
respectively.
Consider the time series of the underlying and the implied volatility surface

provided in DB_ImplVol. Fit a joint normal distribution to the weekly invari-
ants, namely the log-changes in the underlying and the residuals from a vector
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autoregression of order one in the log-changes in the implied volatilities surface
σt. µ

lnSt+τ − lnSt
lnσt+τ − lnσt

¶
∼ N(τµ, τΣ) (429)

Assume that the investment horizon is 8 weeks. We want to represent the linear
returns on the options RC in terms of the linear returns R of the underlying
S&P 500 by means of a linear model

RC ≡ a+ bR+U. (430)

Notice that the specification (430) is the interpretation side of a "factors on
demand" model.
Generate joint simulations for RC and R as in Exercise 5.6 and scatter-plot

the results. Then compute a and b by OLS.
Compute the cash and underlying amounts necessary to hedge RC based on

the delta of the Black-Scholes formula and compare with a and b.
Repeat the above exercise when the investment horizon shifts further or

closer in the future.

See script S_FODHedgeOptions.
To compute the hedge, consider the risk-neutral pricing equation for a generic

option (not necessarily a call option)

∆O − δ∆S ≈ Cr∆t, (431)

where O is the option price; S is the underlying value; r is the risk-free rate; δ
is the "delta"

δ ≡ ∂O

∂S
; (432)

and C is the cash amount:
C ≡ O − δS. (433)

Then
∆O

O
≈ C

O
r∆t+

δ

O
S
∆S

S
(434)

or
RO ≈ a+ bR, (435)

where

a ≡ C

O
r∆t, b ≡ δ

O
S. (436)

6.6.3 Selection heuristics

This exercise is discussed in greater depth in the context of Factors on Demand
in Meucci (2010c), freely available online at ssrn.com.
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Consider the linear return R from the current date to the investment horizon
of a portfolio and a pool of N generic risk factors {Zn}n=1,...,N , such as the
returns of hedging instruments for hedging purposes or the returns of style
indices for style analysis.
As prescribed by the Factors on Demand approach, we want to express the

portfolio return in a dominant-plus-residual way as a linear combination of only
the best K out of the N factors

R =
X
k∈CK

dkZk + η, (437)

where CK is a subset of {1, . . . , N} of cardinality K.
Define the optimal exposures d in (437) to maximize the r-square (3.116) in

Meucci (2005).

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

num  p lay ers  out  o f to ta l 50

 

 

na ive
rec . re jec t ion
rec . ac c eptanc e

Number of attribution factors

R
-s

qu
ar

e

Figure 8: Performance of top-down FoD attribution as function of the number
of factors

Generate arbitrarily the parameters of the joint distribution fR,Z of the
portfolio return and the factors necessary to maximize the r-square of the fit
and generate a script that compares three approaches.
- A naive approach that ranks the r-square provided by each single factor

and collects the K with the most explanatory power.
- The recursive rejection routine in Section 3.4.5 in Meucci (2005) to solve

heuristically the above problem by eliminating the factors one at a time starting
from the full set.
- The recursive acceptance routine, which is the same as the above recursive

rejection, but it starts from the empty set, instead of from the full set.
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See script S_SelectionHeuristicsFoD.

7 Risk Management

7.1 Investor’s objectives

7.1.1 General

Assume a bivariate market, where the prices at the investment horizon (P1, P2)
have the following marginal distributions:

P1 ∼ Ga
¡
ν1, σ

2
1

¢
(438)

P2 ∼ LogN
¡
µ2, σ

2
2

¢
. (439)

Assume that the copula is lognormal, i.e. the grades (U1, U2) of (P1, P2) have
the following joint distribution (not a typo, why?):µ

Φ−1 (U1)
Φ−1 (U2)

¶
∼ N

µµ
0
0

¶
,

µ
1 ρ
ρ 1

¶¶
, (440)

where Φ denotes the cdf of the standard normal distribution. Assume that the
current prices are p1 ≡ E {P1} and p2 ≡ E {P2}.
Fix arbitrary values for the parameters

¡
ν1, σ

2
1, µ2, σ

2
2

¢
and compute the

current prices.
Consider the following allocation α1 ≡ 1, α2 ≡ 2. Simulate the distribution

of the objective of an investor who is interested in final wealth.
Consider the previous allocation. Simulate the distribution of the objective

of an investor who is interested in the P&L.
Consider the previous allocation and the following benchmark β1 ≡ 2, β2 ≡

1. Simulate the distribution of the objective of an investor who is interested in
beating the benchmark.

See the script S_InvestorsObjective.

7.2 Dominance

7.2.1 Strong dominance

Consider a bi-variate marketM. Define a market distribution and two portfolios
such that one portfolio strongly dominates the other.

Consider the market M1 ≡ 1 and

M2 =

½
2 with probability 0.3
3 with probability 0.7

(441)

The allocation α ≡ (0, 1) strongly dominates the allocation α ≡ (1, 0).
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7.2.2 Weak dominance

Consider a bi-variate marketM. Define a market distribution and two portfolios
such that one portfolio weakly dominates the other.

Since strong dominance implies weak dominance, see the previous example.

7.3 Utility

7.3.1 Certainty equivalent interpretation

Express the meaning/intuition of the certainty equivalent of an allocation.
Hint. See somewhere on p.262.

The certainty-equivalent of an allocation is the risk-free amount of money
that would make the investor as satisfied as the given risky allocation.

7.3.2 Certainty equivalent computation

Consider the copula in Exercise 7.1.1, but replace the marginal distributions as
follows:

P1 ∼ N
¡
µ1, σ

2
1

¢
(442)

P2 ∼ N
¡
µ2, σ

2
2

¢
. (443)

Consider the case where the objective is final wealth. Consider an exponential
utility function:

u (ψ) ≡ a− be−
ψ
ζ , (444)

where b > 0.
Compute analytically the certainty equivalent as a function of a generic

allocation vector (α1, α2). What is the effect of a and b?

Consider the utility function (444). As in (5.92) in Meucci (2005) expected
utility reads:

E {u (Ψα)} ≡ a− bE
n
e−

Ψα
ζ

o
= a− bφΨα

µ
i

ζ

¶
, (445)

where φ denotes the characteristic function (1.12) of the objective. The inverse
of (444) is:

ψ ≡ u−1 (eu) = −ζ lnµa− eu
b

¶
. (446)

Therefore the certainty equivalent reads:

CE(α) ≡ u−1 (E {u (Ψα)}) (447)

= −ζ ln
µ
φΨα

µ
i

ζ

¶¶
,
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as in (5.94) in Meucci (2005). The certainty equivalent is not affected by a
and b. In other words, the certainty equivalent is not affected by positive affine
transformations of the utility function.
To compute the certainty equivalent as a function of the allocation vector

we recall from Exercise 7.1.1 that lognormal and normal copulas are the same,
and we notice that normal marginals with a normal copula give rise to a normal
joint distribution:

P ∼ N(µ,Σ) , (448)

where

µ ≡
µ

µ1
µ2

¶
, Σ ≡

µ
σ21 ρσ1σ2

ρσ1σ2 σ22

¶
. (449)

Therefore as in (5.144) we obtain:

CE(α) = α0µ− 1

2ζ
α0Σα. (450)

Is the certainty equivalent corresponding to (444) positive homogeneous? If
so, compute the contribution to the certainty equivalent from the two securities
as defined by Euler’s formula.

The certainty equivalent corresponding to (444) is not positive homogeneous.
This is not surprising: indeed the class of utility functions that give rise to
positive homogenous certainty equivalents is the power class, see (5.114) in
Meucci (2005).

7.3.3 Arrow-Pratt aversion and prospect theory

Consider the prospect-theory utility function:

u (ψ) ≡ a+ b erf

µ
ψ − ψ0√
2η

¶
, (451)

where b > 0.
Plot the utility function for different values of η and ψ0.
Compute the Arrow-Pratt risk aversion (5.121) in Meucci (2005) implied by

the utility (451).

Deriving (B.75) in Meucci (2005), we obtain:

d

dx
erf (x) =

2√
π
e−x

2

. (452)

Hence

u0 (ψ) ≡ b

r
2

πη
e
− ψ−ψ0√

2η

2

(453)
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and

u00 (ψ) ≡ −2b
η

1√
π
e
− ψ−ψ0√

2η

2
µ
ψ − ψ0√
2η

¶
. (454)

Therefore

A (ψ) ≡ −u
00 (ψ)

u0 (ψ)
=

ψ − ψ0
η

,. (455)

For the interpretation of this result see (5.124) in Meucci (2005) and comments
thereafter.

7.4 VaR

7.4.1 VaR in elliptical markets

Consider an N -dimensional market that as in (2.144) in Meucci (2005) is uni-
formly distributed on an ellipsoid (surface and internal points):

M ∼ U(Eµ,Σ) . (456)

Write the quantile index Qc (α) of the objective (5.10) as defined in (5.159)
in Meucci (2005) as a function of the allocation.

We can represent (456) in the notation (2.268) in Meucci (2005) as follows:

M ∼ El
¡
µ,Σ, gUN

¢
, (457)

where gUN is provided in (2.263). From (2.270) in Meucci (2005) we obtain

Ψα ≡ α0M ∼ El
¡
α0µ,α0Σα, gU1

¢
(458)

Therefore
Ψα

d
= α0µ+

√
α0ΣαX (459)

where
X ≡ El

¡
0, 1, gU1

¢
, (460)

for some generator gU1 induced by the N -dimensional uniform distribution.
Therefore

Qc (α) ≡ QΨα (1− c) = Qα0µ+
√
α0ΣαX (1− c) . (461)

Using (T1.16) in the technical appendices at symmys.com > Book >
Downloads we obtain:

Qc (α) = α0µ+
√
α0Σαγc, (462)

where the scalar
γc ≡ QX (1− c) (463)

can be evaluated numerically.
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Use the above results to factor Qc (α) in terms of its marginal contributions.
Hint. Compare with (5.189) in Meucci (2005).

Deriving (462) we obtain

∂Qc (α)

∂α
= µ+

γc√
α0Σα

Σα. (464)

Therefore the marginal contributions C read:

C ≡ diag (α)
∂Qc (α)

∂α
(465)

= diag (α)µ+
γc√
α0Σα

diag (α)Σα.

It is immediate to check that

Qc (α) ≡
NX
n=1

Cn, (466)

see (5.67) and (5.190) in Meucci (2005).

Consider the case N ≡ 3. Generate randomly the parameters µ and Σ.
Generate a sample of J ≡ 1, 000 simulations of the market (456).
Generate a random allocation vector α. Set c ≡ 0.95 and compute Qc (α)

as the sample counterpart of (5.159) in Meucci (2005).
Compute the marginal contributions to Qc (α) from each security in terms

of the empirical derivative of Qc (α):

∂Qc (α)

∂αn
≈
Qc

³
α+ �δ(n)

´
−Qc (α)

�
, (467)

where Qc (x) is calculated as in the previous point; δ
(n) is the Kronecker delta

(A.15) in Meucci (2005); and � is a small number, as compared with the average
size of the entries of α.
Display the result using the built-in plotting function bar.
Use the result above to computeQc (α) in a different way, i.e. semi-analytically.
Hint. You will have to compute the quantile of the standardized univariate

generator, use the simulations generated above.
Use the previous results to compute the marginal contributions to Qc (α)

from each security. Display the result using the built-in plotting function bar.

See the script S_VaRContributionsUniform. In particular, to generate J
scenarios from (469) you can use the following approach. Consider the uniform
distribution on the N -dimensional hypercube:

X ∼ U([−1, 1]× · · · × [−1, 1]) . (468)

87



The entries of X are independent and therefore (468) can easily be simulated.
Now consider the uniform distribution on the N -dimensional unit hypersphere:

Y ∼ U(E0,I) . (469)

To generate a sample of size J from (469) generate a sample of size eJ from
(468). Then use

Y
d
= X| kXk ≤ 1. (470)

To set the number of simulations eJ use (A.78) in Meucci (2005). To generate a
sample of size J from (456) apply (2.270) in Meucci (2005) to the sample from
(469).
To generate a sample of size J from (469) more efficiently you can proceed

as follows (courtesy Xiaoyu Wang, CIMS-NYU). In this function, we represent
(469) as in (2.259)-(2.260) in Meucci (2005):

Y
d
= RU. (471)

In this expression U is uniform on the surface of the unit sphere and R is a
suitable radial distribution independent of U.
To generate J scenarios of U, you can use

U
d
= Z/ kZk , (472)

where
Z ∼ N(0N×1, IN×N) ; (473)

this follows from the last expression in (2.260) and the fact that the normal
distribution is elliptical.
To generate J scenarios of R, notice that, for a given radius r, the radial den-

sity must be proportional to rN−1. Indeed, the infinitesimal volume surrounding
the surface of the sphere of radius r is proportional to rN−1. Therefore, pinning
down the normalization constant, we obtain:

fR (r) =
rN−1

N − 1 . (474)

From (474), the radial cdf reads:

FR (r) = rN . (475)

Inverting the cdf, we obtain the quantile function:

QR (u) = u1/N . (476)

Hence from (2.25)-(2.26) in Meucci (2005) we obtain:

R
d
=W 1/N , (477)

where W ∼ U([0, 1]) is uniform on the unit interval and is independent of U.
To generate J scenarios from (471) it now suffices to multiply the scenarios

for U by the respective scenarios for R.
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7.4.2 Cornish-Fisher approximation of VaR

Assume that the investor’s objective is lognormally distributed:

Ψα ∼ LogN
¡
µα, σ

2
α

¢
, (478)

where µα ≡ 0.05 and σα ≡ 0.05.
Plot the true quantile-based index of satisfaction Qc (α) against the Cornish-

Fisher approximation (5.179) in Meucci (2005) as a function of the confidence
level c ∈ (0, 1).

See script S_CornishFisher.

7.4.3 Extreme value theory approximation of VaR

Assume that the objective is t distributed:

Ψα ∼ St
¡
ν, µα, σ

2
α

¢
, (479)

where ν ≡ 7, µα ≡ 1, σ2α ≡ 4.
Plot the true quantile-based index of satisfactionQc (α) for c ∈ [0.950, 0.999].
Hint. Use the built-in function tinv.
Generate Monte Carlo simulations from (479) and superimpose the plot of

the sample counterpart of Qc (α) for c ∈ [0.950, 0.999].
Consider the threshold: eψ ≡ Q0.95 (α) . (480)

Superimpose the plot of the EVT fit (5.186) in Meucci (2005) for c ∈ [0.950, 0.999].
Hint. Estimate the parameters ξ and v using the built-in function xi_v =

gpfit(Excess), where Excess are the realizations of the random variable

Z ≡ eψ −Ψα|Ψα ≤ eψ. (481)

Indeed the cdf of Z satisfies

FZ (z) ≡ P {Z ≤ z} (482)

= P
neψ −Ψα ≤ z|Ψα ≤ eψo

= P
n
Ψα ≥ eψ − z|Ψα ≤ eψo

= 1− P
n
Ψα ≤ eψ − z|Ψα ≤ eψo

≡ 1− Lψ (z) ,

where in the last row we used (5.182) in Meucci (2005). From (5.184) in Meucci
(2005) we obtain

FZ (z) ≈ Gξ,v (z) , (483)

which is the expression that gpfit attempts to fit.
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See script S_EVT.

7.5 Expected shortfall

7.5.1 Expected shortfall in elliptical markets

Assume that the market is multivariate t distributed:

M ∼ St (ν,µ,Σ) . (484)

Write the expected shortfall ESc (α) defined in (5.207) in Meucci (2005) as
a function of the allocation.

From (484) and (2.195) in Meucci (2005) we obtain

Ψα ≡ α0M ∼ St (ν, α0µ, α0Σα) , (485)

or
Ψα

d
= α0µ+

√
α0ΣαX, (486)

where
X ∼ St (ν, 0, 1) . (487)

From (5.207) in Meucci (2005) we obtain

ESc (α) =
1

1− c

Z 1−c

0

QΨα (s) ds (488)

=
1

1− c

Z 1−c

0

h
α0µ+

√
α0ΣαQX (s)

i
ds.

and thus
ESc (α) = α0µ+

√
α0Σαζc, (489)

where

ζc ≡
1

1− c

Z 1−c

0

QX (s) ds. (490)

This scalar can be evaluated as the numerical integral of the quantile function
of the standard univariate t distribution.

Use the previous results to factor the ESc (α) in terms of its marginal con-
tributions.
Hint. Compare with (5.236) in Meucci (2005).

Deriving (489) we obtain

∂ ESc (α)

∂α
= µ+

ζc√
α0Σα

Σα. (491)
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Therefore the marginal contributions C read:

C ≡ diag (α)
∂ ESc (α)

∂α
(492)

= diag (α)µ+
ζc√
α0Σα

diag (α)Σα.

It is immediate to check that

ESc (α) ≡
NX
n=1

Cn, (493)

see see (5.67) in Meucci (2005).

Assume N ≡ 40 and ν ≡ 5. Generate randomly the parameters (µ,Σ) and
the allocation α. Then generate J ≡ 10, 000 Monte Carlo scenarios from the
market distribution (484).
Generate a random allocation vector α. Set c ≡ 0.95 and compute ESc (α)

as the sample counterpart of (5.208) in Meucci (2005).
Compute the marginal contributions to ESc (α) from each security as the

sample counterpart of (5.238) in Meucci (2005). Display the result in a subplot
using the built-in plotting function bar.
Use the previous results to compute ESc (α) in a different way, i.e. semi-

analytically. Never at any stage use simulations.
Hint. Use the numerical integration function quad applied to the built-in

quantile function tinv.
Compute the marginal contributions to ESc (α) from each security using

previous results. Never at any stage use simulations. Display the result in a
second subplot using the built-in plotting function bar.

See script S_ESContributionsT.

7.5.2 Expected shortfall and linear factor models

Assume a linear factor model for the market

M ≡ BF+U, (494)

where B is a N × K matrix with entries of the order of the unit; F is a K-
dimensional vector; U is a N -dimensional vector; andµ

lnF
ln (U+ a)

¶
∼ St (ν,µ,Σ) , (495)

where µ ≡ 0, a is such that E {U} ≡ 0 and

Σ ≡
µ

�Σf 0
0 �2Σu

¶
, (496)
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with Σf a correlation matrix and Σu a Toepliz correlation matrix

Σun,m ≡ e−γ|n−m|, (497)

with �¿ 1 and γ arbitrary.
Assume N ≡ 30, K ≡ 10 and ν ≡ 10. Generate randomly the parameters

in Σ and the allocation α. Then generate J ≡ 10, 000 Monte Carlo scenarios
from the market distribution (494).
Set c ≡ 0.95 and compute ESc (α) as the sample counterpart of (5.208) in

Meucci (2005).
Compute the K marginal contributions to ESc (α) from each factor and the

one aggregate contribution from all the residuals, as the sample counterpart of
(5.238) in Meucci (2005) adapted to the factors. Display the result in a subplot
using the built-in plotting function bar.
Hint. Represent the objective as a linear function

Ψ ≡ βF+ u. (498)

See script S_ESContributionsFacts.

8 Static portfolio management

8.1 Mean-variance

8.1.1 Mean-variance pitfalls: two-step approach

Assume a market of N ≡ 4 stocks and all possible zero-coupon bonds. The
weekly compounded returns of the stocks are market invariants with the follow-
ing distribution:

Ct,τ ∼ N(µ,Σ) . (499)

Estimate the matrix Σ and the vector µ from the time series of weekly prices
in the attached database StockSeries. To do this, shrink the sample mean as
in (4.138) in Meucci (2005), where the target is the null vector and the shrinkage
factor is set as α ≡ 0.1. Similarly, shrink as in (4.160) in Meucci (2005) the
sample covariance to a suitable multiple of the identity by a factor α ≡ 0.1.
Assume that the weekly changes in yield to maturity for the bond market are

fully codependent, i.e. co-monotonic. In other words, assume that the copula
of any pairs of weekly yield changes is (2.106) in Meucci (2005). Also, assume
that they have the following marginal distribution:

∆τY
(υ) ∼ N

Ã
0,

µ
20 + 1.25υ

10, 000

¶2!
, (500)

where υ denotes the generic time to maturity (measuring time in years).
Assume that the bonds and the stock market are independent. Assume that

the current stock prices are the last set of prices in the time series. Restrict
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your attention to bonds with times to maturity 4, 5, 10, 52 and 520 weeks, and
assume that the current yield curve, as defined in (3.30) in Meucci (2005) is flat
at 4%.
Produce joint simulations of the four stock and five bond prices at the in-

vestment horizon τ of four weeks.
Assume that the investor considers as his market one single bond with time

to maturity υ ≡ five weeks and all the stocks.
Determine numerically the mean-variance inputs, namely expected prices

and covariance of prices (not returns).
Determine analytically the mean-variance inputs, namely expected prices

and covariance of prices (not returns) and compare with their numerical coun-
terpart.
Assume that the investor’s objective is final wealth. Suppose that his budget

is w ≡ 100. Assume that the investor cannot short-sell his securities, i.e. the
allocation vector cannot include negative entries.
Compute the mean-variance efficient frontier as represented by a grid of 40

portfolios whose expected values are equally spaced between the expected value
of the minimum variance portfolio and the largest expected value among the
portfolios composed of only one security.
Assume that the investor’s satisfaction is the certainty equivalent associated

with an exponential function

u (ψ) ≡ −e− 1
ζψ, (501)

where ζ ≡ 10.
Compute the optimal allocation according to the two-step mean-variance

framework.
Hints

- Do not use portfolio weights and returns. Instead, use number of securities
and prices.
- Given the no-short-sale constraint, the minimum variance portfolio cannot be
computed analytically, as in (6.99) in Meucci (2005): use quadprog to compute
it numerically.
- Given the no-short-sale constraint, the frontier cannot be computed analyti-
cally, as in (6.97)-(6.100) in Meucci (2005): use quadprog to compute it numer-
ically.

See the script S_MVOptimization.

8.1.2 Mean-variance pitfalls: horizon effect

Consider the stock market described in the previous exercise and the investment
horizon τ of one day.
Determine analytically the mean-variance inputs in terms of weights and

returns, namely expected linear returns and covariance of linear returns and
compare with their numerical counterpart.
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Assume that the investor’s objective is final wealth. Suppose that the budget
is b ≡ 100. Assume that the investor cannot short-sell the securities, i.e. the
allocation vector cannot include negative entries.
Compute the mean-variance efficient frontier in terms of portfolio weights as

represented by a grid of 40 portfolios whose expected linear returns are equally
spaced between the expected value of the linear return on the minimum variance
portfolio and the largest expected value among the linear returns of all the
securities.
Assume that the investor’s satisfaction is the certainty equivalent associated

with an exponential function

u (ψ) ≡ −e− 1
ζψ, (502)

where ζ ≡ 10.
Compute the optimal allocation according to the two-step mean-variance

framework.
Repeat the above steps an the investment horizon τ of four years

See the script S_MVHorizon.

8.1.3 Benchmark driven allocation

Consider the market described in Exercise 8.1.1, namely one single bond with
time to maturity υ ≡ five weeks and all the stocks.
Produce joint simulations of the four stock and the one bond prices at the

investment horizon τ of four weeks.
Determine numerically the mean-variance inputs in terms of weights and

returns, namely expected linear returns and covariance of linear returns.
Determine analytically the mean-variance inputs in terms of weights and

returns, namely expected linear returns and covariance of linear returns and
compare with their numerical counterpart.
Assume first that the investor’s objective is final wealth. Suppose that the

budget is b ≡ 100. Assume that the investor cannot short-sell the securities, i.e.
the allocation vector cannot include negative entries.
Compute the mean-variance efficient frontier in terms of portfolio weights as

represented by a grid of 40 portfolios whose expected linear returns are equally
spaced between the expected value of the linear return on the minimum variance
portfolio and the largest expected value among the linear returns of all the
securities.
Now assume that the investor’s objective is wealth relative to an equal-weight

benchmark, i.e. a benchmark that invests an equal amount of money in each
security in the market.
Compute the mean-variance efficient frontier in terms of portfolio weights as

represented by a grid of 40 portfolios whose expected linear returns are equally
spaced between the expected value of the linear return on the minimum variance

94



portfolio and the largest expected value among the linear returns of all the
securities.
Project the two efficient frontiers computed above in the expected outper-

formance/tracking error plane.

For the benchmark-driven investor, the objective is (6.170) in Meucci (2005)
or

Φα ≡ α0KPT+τ , (503)

where

K ≡ I− pTβ
0

β0pT
(504)

and β is the benchmark.
In particular, notice that K is singular: the columns of K span a vector

space of dimension N − 1. Any vector orthogonal to all the column of K is
spanned by the benchmark. Therefore Φβ = β0KPT+τ ≡ 0, which implies that
the benchmark has zero expected outperformance and zero tracking error, see
Figure 6.21 in Meucci (2005).
For a budget b, the return-based objective is defined as:

Φα
b

=
α0KPT+τ

α0pT
=
α0PT+τ

α0pT
− α0pTβ

0PT+τ

(α0pT )
¡
β0pT

¢
=

∙
α0PT+τ

α0pT
− 1
¸
−
∙
β0PT+τ

β0pT
− 1
¸

(505)

= Lα − Lβ,

where Lα and Lβ are the linear returns of the portfolio and the benchmark,
respectively.
Given that the constraints are linear, we resort to the dual formulation of

the return-based mean-variance problem, which reads

α (e) ≡ argmin
α0pT≡b
α≥0

E{Lα−Lβ}=e

{Var {Lα − Lβ}} (506)

= argmin
α0pT≡b
α≥0

E{Lα−Lβ}=e

{Var {Lα}+Var {Lβ}− 2Cov {Lα, Lβ}}

= argmin
α0pT≡b
α≥0

E{Lα}=e

½
1

2
Var {Lα}− Cov {Lα, Lβ}

¾

Using (T6.85) in the technical appendices at symmys.com > Book >
Downloads we obtain in terms of the portfolio weightsw, the benchmark weights
wb, and the securities returns L

w (e) ≡ argmin
w01≡1
w≥0

w0
E{L}=e

½
1

2
w0Cov {L}w −w0bCov {L}w

¾
. (507)
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This is the input for the relative optimization in the script S_MVBenchmark.

8.1.4 Mean-variance for derivatives

Consider a market of at-the-money call options on the underlyings whose daily
time series are provided in the file DB (30, 91 and 182 are the time to expiry).
Assume that the investment horizon is two days.
Fit a normal distribution to the invariants, namely the log-changes in the

underlying in the file DB and the log-changes in the respective at-the-money
implied volatilities in the file DB.
Project this distribution analytically to the horizon.
Generate simulations for the sources of risk, namely underlying prices and

implied volatilities at the horizon.
Price the above simulations through the full Black-Scholes formula, assuming

no skewness correction for the implied volatilities and a constant risk-free rate
at 4%.
Compute the distribution of the linear returns, as represented by the simu-

lations: the current prices of the options can be obtained similarly to the prices
at the horizon by assuming that the current values of underlying and implied
volatilities are the last observations in the database.
Compute numerically the mean-variance inputs.
Compute the mean-variance efficient frontier in terms of relative weights,

assuming the standard long-only and full investment constraints.
Plot the efficient frontier in the plane of weights and standard deviation.
Hint. Compare with Exercise 5.6: here we are making unrealistic dimension

reduction assumptions on the dynamics of the implied volatility surface.

See the script S_MVCalls.

9 Dynamic strategies
The exercises is this section are placed into a broader context in Meucci (2010e),
freely available online at ssrn.com.
Assume there are two securities: a risk free asset whose value evolves deter-

ministically with an exponential growth at a constant rate r

lnDt+δt = lnDt + rδt, (508)

and a risky asset whose value Pt follows a geometric Brownian motion with drift
µ and volatility σ

lnPt+δt = lnPt + (µ−
σ2

2
)δt+ σ

√
δtZt, (509)

where Zt ∼ N(0, 1) are independent across non-overlapping time steps.
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Assume the current time is t ≡ 0 and the investment horizon is t ≡ τ .
Assume there is an initial budget

S0 given. (510)

Consider a strategy that rebalances between the two assets throughout the in-
vestment period [0, τ ]

(αt, βt)t∈[0,τ ] , (511)

where αt denotes the number of units of the risky asset and βt denotes the
number of units of the risk-free asset. The value of the strategy is

St = αtPt + βtDt, (512)

and the strategy must be self-financing, i.e. whenever a rebalancing occurs

(αt, βt) 7→
¡
αt+δt, βt+δt

¢
(513)

the following must hold true

St+δt ≡ αtPt+δt + βtDt+δt ≡ αt+δtPt+δt + βt+δtDt+δt, (514)

The strategy (511) is determined equivalently by the weights

wt ≡
αtPt
St

, ut ≡
βtDt

St
. (515)

Prove that the self-financing constraint (514) is equivalent to the weight of
the risk-free asset being equal to

ut ≡ 1− wt

and that therefore the whole strategy if fully determined by the free evolution
of the weight wt.

We denote by (wt, ut) the pre-trade weights and by ( ewt, eut) the post-trade
weights. Dividing both sides of (514) by the value of the strategy we obtain

wt+δt + ut+δt =
αtPt+δt + βtDt+δt

St+δt
(516)

=
αtPt+δt + βtDt+δt

αtPt+δt + βtDt+δt
= 1,

and

ewt+δt + eut+δt =
αt+δtPt+δt + βt+δtDt+δt

St+δt
(517)

=
αt+δtPt+δt + βt+δtDt+δt

αt+δtPt+δt + βt+δtDt+δt
= 1.
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9.1 Buy & hold

This exercise is discussed in greater depth and placed into a broader context in
Meucci (2010e), freely available online at ssrn.com.
Consider the buy & hold strategy, that invests the budget (510) in the two

securities and never reallocates throughout the investment period [0, τ ].

αt ≡ α, βt ≡ β. (518)
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Figure 9: Buy & hold strategy: one path

Generate the deterministic exponential growth dynamics (508) at equally
spaced time intervals τ .
Generate a large number of Monte Carlo paths from the geometric Brownian

motion (509) at equally spaced time intervals [0, δt, 2δt, . . . , τ ].
Plot one path for the value of the risky asset {Pt}t=0,δt,...,τ , and overlay the

respective path {St}t=0,δt,...,τ for the value of the buy & hold strategy (518),
see Figure 9
In a separate figure, plot the evolution of the portfolio weight (515) of the

risky asset {wt}t=0,δt,...,τ on that path, see Figure 9.
In a separate figure, scatter-plot the final payoff of the buy & hold strategy

(518) over the payoff of the risky asset, and verify that the profile is linear, see
Figure 10.
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Figure 10: Buy & hold strategy: final payoff in many paths

See the script S_BuyNHold.

9.2 Utility maximization

This exercise is discussed in greater depth and placed into a broader context in
Meucci (2010e), freely available online at ssrn.com.
Consider the constant weight strategy, that invests the budget (510) in the

two securities and keeps the weight of the risky security constant throughout
the investment period [0, τ ].

wt ≡ w. (519)

Prove that this strategy maximizes the expected final utility

w∗(·) ≡ argmax
S0,w(·)∈C

(E {u (Sτ )}) , (520)

where u is the power utility function

u (s) =
sγ

γ
, (521)

with γ < 1.
Hint. As proved in Meucci (2010e) the strategy evolves as

dSt
St

= (r + wt (µ− r)) dt+ wtσdBt. (522)
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Figure 11: Constant weight dynamic strategy: one path

and the final value is lognormally distributed

Sτ = S0e
Yw(·) , (523)

where Y is a normal
Yw(·) ∼ N

³
mw(·) , s

2
w(·)

´
(524)

with expected value

mw(·) ≡ rτ +

Z τ

0

µ
(µ− r)wt −

σ2

2
w2t

¶
dt (525)

and variance

s2w(·) =

Z τ

0

σ2w2t dt. (526)

From (523) we obtain

E {u (Sτ )} =
Sγ0
γ
E
n
e
γYw(·)

o
. (527)

Since Yw(·) is normally distributed with expected value (525) and variance (526),
it follows that eγY is lognormally distributed and thus from (1.98) in Meucci
(2005) we obtain

E
n
e
γYw(·)

o
= e

γ mw(·)+
γ
2 s

2
w(·) . (528)
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Therefore, substituting (525) and (526), the optimal strategy (520) solves

w∗(·) ≡ argmax
w(·)

½Z τ

0

µ
wt (µ− r)− w2t

σ2

2
(1− γ)

¶
dt

¾
. (529)

The solution to this problem is the value that maximizes the integrand at each
time. Therefore, the solution is the constant

w∗(·) ≡ w ≡ 1

1− γ

µ− r

σ2
. (530)

Generate the deterministic exponential growth dynamics (508) at equally
spaced time intervals τ .
Generate a large number of Monte Carlo paths from the geometric Brownian

motion (509) at equally spaced time intervals [0, δt, 2δt, . . . , τ ].
Plot one path for the value of the risky asset {Pt}t=0,δt,...,τ , and overlay

the respective path {St}t=0,δt,...,τ for the value of the constant weight strategy
(519), see Figure 11.
In a separate figure, plot the (non) evolution of the portfolio weight (515) of

the risky asset {wt}t=0,δt,...,τ on that path, see Figure 11.
In a separate figure, scatter-plot the final payoff of the constant weight strat-

egy (519) over the payoff of the risky asset, and verify that the profile is concave,
see Figure 12.

Payoff distribution

Risky investment distribution

Strategy
Risky investment

Strategy payoff profile vs. risky investment

Figure 12: Constant weight dynamic strategy: final payoff in many paths
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See the script S_UtlityMax.

9.3 Constant proportion portfolio insurance (CPPI)

This exercise is discussed in greater depth and placed into a broader context in
Meucci (2010e), freely available online at ssrn.com.
Consider the CPPI strategy, that invests the budget (510) as follows. First

we specify a deterministically increasing floor Ft that satisfies the budget con-
straint

F0 ≤ S0 (531)

and grows to a guaranteed value H at the horizon

Ft ≡ He−r(τ−t), t ∈ [0, τ ] . (532)

At all times t, for any level of the strategy St there is an excess cushion

Ct ≡ max (0, St − Ft) . (533)

According to the CPPI, a constant multiple m of the cushion is invested in the
risky asset, therefore obtaining the dynamic strategy’s weight for the risky asset

w ≤ wt ≡
mCt

St
≤ w, (534)
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Figure 13: CPPI: one path
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Generate the deterministic exponential growth dynamics (508) at equally
spaced time intervals τ .
Generate a large number of Monte Carlo paths from the geometric Brownian

motion (509) at equally spaced time intervals [0, δt, 2δt, . . . , τ ].
Plot one path for the value of the risky asset {Pt}t=0,δt,...,τ , and overlay

the respective path {St}t=0,δt,...,τ for the value of the CPPI strategy (534), see
Figure 13.
In a separate figure, plot the evolution of the portfolio weight (515) of the

risky asset {wt}t=0,δt,...,τ on that path, see Figure 13.
In a separate figure, scatter-plot the final payoff of the CPPI strategy (534)

over the payoff of the risky asset, and verify that the profile is convex, see Figure
14.

Payoff distribution

Risky investment distribution

Strategy
Risky investment

Strategy payoff profile vs. risky investment

Figure 14: CPPI: final payoff in many paths

See the script S_CPPI.

9.4 Option based portfolio insurance (OBPI)

This exercise is discussed in greater depth and placed into a broader context in
Meucci (2010e), freely available online at ssrn.com.
Consider an arbitrary payoff at the investment horizon as a function of the

risky asset
Sτ = s (Pτ ) . (535)
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and assume that you can compute the solution G (t, p) of the following partial
differential equation

∂G

∂t
+

∂G

∂p
r +

1

2

∂2G

∂p2
σ2p2 −Gr = 0, (536)

with boundary condition

G (τ , p) ≡ s (p) , p > 0, (537)

Prove that a strategy that invests an initial budget

S0 ≡ G (0, P0) (538)

and allocates dynamically the following weight in the risky asset

wt ≡
Pt
St

∂G (t, Pt)

∂Pt
, (539)

provides the desired payoff (535).
Hint. As proved in Meucci (2010e) the strategy evolves as

dSt
St

= (r + wt (µ− r)) dt+ wtσdBt. (540)

We want to prove that the following identity holds at all times, and in
particular at t ≡ τ

St ≡ G (t, Pt) , t ∈ [0, τ ] . (541)

Indeed, using Ito’s rule on G (t, Pt), where Pt follows the geometric Brownian
motion (509) yields

dGt =
∂G

∂t
dt+

∂G

∂Pt
dPt +

1

2

∂2G

∂P 2t
(dPt)

2

=
∂G

∂t
dt+

∂G

∂Pt
(µPtdt+ σPtdB) +

1

2

∂2G

∂P 2t
σ2P 2t dt (542)

=

µ
∂G

∂t
+

∂G

∂Pt
µPt +

1

2

∂2G

∂P 2t
σ2P 2t

¶
dt+

∂G

∂Pt
σPtdBt.

Also, from (540) and (539) we obtain

dSt = Strdt+ Stwt

µ
dPt
Pt
− rdt

¶
= Strdt+ Pt

∂G

∂Pt

µ
dPt
Pt
− rdt

¶
(543)

= Strdt+
∂G

∂Pt
(µPtdt+ σPtdBt − Ptrdt)
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Therefore

d (Gt − St) =

µ
∂G

∂t
+

∂G

∂Pt
µPt +

1

2

∂2G

∂P 2t
σ2P 2t

¶
dt+

∂G

∂Pt
σPtdBt

−Strdt−
∂G

∂Pt
(µPtdt+ σPtdBt − Ptrdt) (544)

=

µ
∂G

∂t
+
1

2

∂2G

∂P 2t
σ2P 2t − Str +

∂G

∂Pt
Ptr

¶
dt

Using (536) we finally obtain

d (Gt − St)

(Gt − St)
= rdt, (545)

Which means
(Gτ − Sτ ) = (G0 − S0) e

rτ . (546)

Since from (538) we have G0 − S0 = 0, it follows that (541) holds true.

Assume that the payoff (535) is that of a call option with strike K

s (p) ≡ max (0, p−K)

In this context the partial differential equation (536) was solved in Black and
Scholes (1973)

G (t, p) = pΦ (d1)− e−r(τ−t)KΦ (d2) , (547)

where Φ is the cumulative distribution for the standard normal distribution and

d1 (t, p) ≡
1

σ
√
τ − t

µ
ln
³ p

K

´
+

µ
r +

σ2

2

¶
(τ − t)

¶
(548)

d2 (t, p) ≡ d1 (t, p)− σ
√
τ − t. (549)

From the explicit analytical expression (547) we can derive the expression for
the weight (539) of the risky asset

wt =
Pt
St
Φ (d1 (t, Pt)) . (550)

Generate the deterministic exponential growth dynamics (508) at equally
spaced time intervals τ .
Generate a large number of Monte Carlo paths from the geometric Brownian

motion (509) at equally spaced time intervals [0, δt, 2δt, . . . , τ ].
Plot one path for the value of the risky asset {Pt}t=0,δt,...,τ , and overlay the

respective path {St}t=0,δt,...,τ for the value of the option replication strategy
(550), see Figure 15.
In a separate figure, plot the evolution of the portfolio weight of the risky

asset {wt}t=0,δt,...,τ on that path, see Figure 15.
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Figure 15: Dynamic replication of call option profile: one path

In a separate figure, scatter-plot the final payoff of the option replication
strategy (550) over the payoff of the risky asset, and verify that it matches the
option payoff, see Figure 16

See the script S_OptionReplication.

10 Estimation risk

10.1 General

10.1.1 Opportunity cost

Replicate the evaluation of the "best performer" allocation (8.42) in Meucci
(2005) and described in Figure 8.2 in Meucci (2005). You do not need to draw
the figure, as long as you correctly compute the number S (θ), as well as the
distributions Sθ

¡
α
£
IθT
¤¢
, C+θ

¡
α
£
IθT
¤¢
and OCθ

¡
α
£
IθT
¤¢
, as function of θ ∈Θ.

See the script S_EvaluationGeneric.

10.2 Robust

10.2.1 Robust mean-variance for derivatives

Consider the market of call options in Exercise 8.1.4.
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Figure 16: Dynamic replication of call option profile: final payoff in many paths

Consider a small ellipsoidal neighborhood of the expected linear returns,
as determined by reasonable T, m, and q2, see (9.118) in Meucci (2005), and
assume no uncertainty in the estimation of the covariance of the linear returns,
see (9.119) in Meucci (2005), and set up the robust optimization problem (9.117)
in the form of SOCP, see comments after (9.130).
Compute the robust mean-variance efficient frontier in terms of relative

weights, assuming the standard long-only and full investment constraints. Then
plot the efficient frontier in the plane of weights and standard deviation.
Hint. Use the CVX package, located at www.stanford.edu/~boyd/cvx/

See the script S_MVCallsRobust.
Note: this script uses the CVX package. Before running the script, please

download and install the package from www.stanford.edu/~boyd/cvx, follow-
ing the instructions from Appendix A in cvx\_usrguide.pdf."

10.3 Black-Litterman & beyond

10.3.1 Black-Litterman

Assume as in Black-Scholes that the compounded returns are normally distrib-
uted

ln (PT+τ )− ln (pT ) ∼ N(µ,Σ) (551)

Compute the inputs of the mean-variance approach, namely expectations
and covariances of the linear returns
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Also from (2.219)-(2.220) in Meucci (2005) for a log-normal variable

Y ∼ LogN (µ,Σ) . (552)

then

E {Y} = eµ+
1
2 diag(Σ). (553)

E
©
YY0ª =

³
e(µ+

1
2 diag(Σ))e(µ+

1
2 diag(Σ))0

´
◦ eΣ, (554)

where ◦ denotes the term-by-term Hadamard product.
Since

1 +R ∼ LogN (µ,Σ) , (555)

using (361), (362) and the property

E {(Y − 1)} = E {Y}− 1 (556)

E
©
(Y − 1) (Y − 1)0

ª
= E

©
YY0ª+ 110 − E©Y10ª− E©1Y0ª . (557)

we can easily compute the expectations E {R} and the second moments
E
©
RR0ª. The covariance then follows from

Cov {R} = E
©
RR0ª− E {R}E {R0} . (558)

Upload the database CovNRets that contains estimates for µ and Σ. Use
the results from the previous point to compute and plot numerically the efficient
frontier under the constraints that the weights sum to one and that they are
non-negative.
Construct a pick matrix that sets views on the spread between the com-

pounded return of the first and the last security. Set a one-standard deviation
bullish view on that spread. Use the market-based Black-Litterman formula
(9.44) in Meucci (2005) to compute the normal parameters that reflect those
views. Map the results into expectations and covariances for the linear returns.
Compute and plot numerically the efficient frontier under the same constraints
as above

See script S_BLmBasic.

10.3.2 Beyond Black-Litterman

Consider the market prior

X
d
= BZ−1 + (1−B)Z1 (559)

where
Z−1 ∼ N(−1, 1) , Z1 ∼ N(1, 1) ; (560)
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B is Bernoulli with P {B = 1} ≡ 1/2; and all the variables are independent.
Compute and plot the posterior market distribution that is the most consis-

tent with the view eE {X} ≡ 0.5. (561)

Hint. Use the package "Entropy Pooling: Fully Flexible Views and Stress-
testing" available at www.mathworks.com/matlabcentral/fileexchange/21307.

See script S_EntropyView.
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