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Abstract

This paper uses computational techniques to identify the Markov perfect equilibria
in a two agent linear quadratic differential game with bounded controls. No evidence
is found asymmetric equilibria when the agents are symmetric or of non-linear equi-
libria when the agents are asymmetric. This suggests that the standard continuum
result for identical agents is not robust and that non-linear strategies are not of gen-
eral interest in the analysis of linear quadratic differential games. The techniques
presented here are applicable to a broader class of differential games as well.
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1 Introduction

This chapter extends the model of Rowat (2002) by allowing asymmetric play
in a linear quadratic differential game with bounded controls. The body of this
paper works with identical agents; Appendix A considers non-identical agents.
While identical agents are typically assumed to play symmetrically they are
assumed to play asymmetrically here for two reasons.
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Asymmetric play with control bounds

First, exposition is simplified while still introducing all the numerical tech-
niques required for the appendix’ asymmetric analysis. Second, the special
case of identical agents’ symmetric play may be tested against the results in
Rowat. To facilitate this test, a linear quadratic game is explored here. The
techniques presented, though, are applicable to more general differential games
as well.

Technically, the difference between this paper and its predecessor, Rowat
(2002), is that the previous single ordinary differential equation is now replaced
by a system of two ordinary differential equations. As systems of differential
equations are less likely to yield analytical solutions than are ordinary differ-
ential equations, numerical techniques are adopted here. While less transpar-
ent than are analytical solutions, numerical techniques allow solution of more
complicated problems, such as those with non-linear equations of motion or
asymmetric agents.

Against this advantage, the numerical techniques implemented here are unable
to consider discontinuous strategies. Dockner and Sorger’s model (Dockner and
Sorger, 1996) with discontinuous MPE strategies shows that these should not
be dismissed a priori. Their model differs from the present, though, in at least
two important ways: there is no glut point in consumption and increases in
agents’ controls decrease the state variable. Neither of these features, which
are required for their discontinuous MPE strategies, are present here.

Numerical analysis proceeds by integrating over the state space from a grid
of initial conditions. The conditions presented in Rowat (2002) are applied to
rule out strategies, refining the candidate set.

In general, a grid of initial conditions will not find isolated MPE strategies
unless it is adapted to finding them. In an attempt to find these isolated
strategies, an adapted second grid of initial conditions is therefore developed,
based on the following observation: in Rowat, the isolated linear MPE strat-
egy was identified as a singular solution because it intersected another linear
candidate solution, uniquely among all the candidates. As this suggests a re-
lationship between MPE and singularities, the singularity locus is identified
for this case of asymmetric play and the strategies through it calculated. For
identical agents, the locus is based on a conic section; otherwise the locus is
more complicated.

Section 2 presents the model. Section 3 contains definitions and conditions
required to test whether a solution to the differential equation system is an
MPE. Section 4 examines the singularity locus while Section 5 discusses the
coding and execution. Section 6 presents the results of the numerical analysis
and Section 7 concludes. Appendix A extends analysis to the case of non-
identical agents.
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Asymmetric play with control bounds

2 The linear quadratic model

Consider two agents, indexed by i = 1, 2. Each chooses its respective xi ∈ <+,
thus controlling a state variable, z ∈ Z ≡ <++, which evolves according to
the linear differential equation of motion

ż = x1 (t) + x2 (t)− βz (t) s.t. z (0) = z > 0; (1)

where β ∈ <+ is a constant term. The strict inequality simplifies consideration
of activity around the state space’s lower bound.

Grant the agents identical quadratic instantaneous utility functions

u (xi, z) = − (xi − ξ)2 − ν (z − ζ)2 ; (2)

where ν, ξ and ζ are positive real constants. Instantaneous utility is therefore
concave in both control and state.

Agents’ intertemporal objective functions are of the form

∫ ∞

0
e−δtu (xi (t) , z (t)) dt; (3)

where δ ∈ <++ is a discount rate and t is time, assumed, for calibration
purposes, to be in years.

The linear equation of motion and quadratic objective function together define
a linear quadratic game. The example motivating this one is a greenhouse gas
emissions problem. In this light, xi may be thought of as nation i’s greenhouse
gas emissions, produced in a fixed ratio to and as a byproduct of national
production, z the atmospheric stock of greenhouse gasses and β the decay
rate.

Agents’ Bellman equations are of the form

δVi (z) = max
xi≥0

{

− (xi − ξ)2 − ν (z − ζ)2 + V ′i (z) (x1 + x2 − βz)
}

, i = 1, 2;

(4)
when the value function is piecewise C1, an assumption maintained through-
out. Its first order conditions are

x∗i = max

{

0, ξ +
V ′i (z)

2

}

, i = 1, 2. (5)

As the objective functions are concave, x∗i is unique and a maximiser; substi-
tute it into equation 4 for

δVi (z) = − (x∗i − ξ)2 − ν (z − ζ)2 + V ′i (z) (x
∗
i + x−i − βz) , i = 1, 2; (6)

3



Asymmetric play with control bounds

and where −i indicates the agent that is not agent i.

Although x∗i is unique, solutions to differential equation 6 are not. Therefore,
solutions to differential equation 6 are not generally solutions to maximisation
problem 4. Denote a solution to equation 6 byWi (); call this a candidate value
function; let Wi be the family of solutions to equation 6. Therefore Vi ∈ Wi.

When the candidate value function is twice differentiable, differentiating equa-
tion 6 with respect to z yields, with some manipulation

w′i (z) (x
∗
1 + x∗2 − βz)− 2x∗′i (x∗i − ξ)

= (β + δ − x∗′1 − x∗′2 )wi (z) + 2ν (z − ζ) , i = 1, 2.
(7)

when wi ≡ W ′
i .

The following assumes this second differentiation to be valid; points at which
it is not, called non-invertible, will be identified numerically.

As either x∗i > 0, the interior of the action space, or x∗i = 0, the action space’s
corner, there are three possible scenarios for each z ∈ Z: both agents play in
the interior, both play on the corner, or one plays in the interior and the other
on the corner. These are now explored.

2.1 Both agents interior

In this case, x∗i > 0∀i = 1, 2 ⇒ x∗i = ξ + 1
2
wi (z) , x

∗′
i = 1

2
w′i and equations 7

become the differential equation system







g 1
2
w1

1
2
w2 g













w′1

w′2





 =







(β + δ)w1 + 2ν (z − ζ)

(β + δ)w2 + 2ν (z − ζ)





 ; (8)

where

ż = g (w, z) ≡ 1

2
(w1 + w2)− βz + 2ξ. (9)

A special case of this is

w′ (z) =
(β + δ)w + 2ν (z − ζ)

3
2
w − βz + 2ξ

; (10)

the symmetric play (w ≡ w1 = w2) equation analysed in Rowat (2002).
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2.2 One agent interior, the other cornered

Assume without loss of generality that agent i has cornered. Now x∗j > 0, x∗i =
0 ⇒ x∗j = ξ + 1

2
wj (z) , x

∗′
j = 1

2
w′j;x

∗′
i = 0 so that equations 7 produce the

differential equation system







h 0

1
2
wi h













w′j

w′i





 =







(β + δ)wj + 2ν (z − ζ)

(β + δ)wi + 2ν (z − ζ)





 ; (11)

where

ż = h (w, z) ≡ 1

2
wj − βz + ξ. (12)

As the first equation in system 11 is independent of wi and of similar form to
equation 10 it is similarly solvable for:

Kj = |wj − c− sc (z − d)|γc
∣

∣

∣wj − c− sd (z − d)
∣

∣

∣

γd

;

where

c≡ 2ν
βζ − ξ

β (βδ) + ν
; (13)

d≡ ξ (β + δ) + νζ

β (β + δ) + ν
> 0; (14)

{

sc, sd
}

≡ δ ±
√
δ2 + 4ν, s.t. sc > 0 > sd;

γc=−2β − sc

sd − sc
; (15)

γd=
2β − sd

sd − sc
< 0; (16)

and Kj is a constant of integration.

Solving the first equation in system 11 does not seem to allow an analytical
solution for wi (z).

2.3 Both agents cornered

When both agents play on the corner x∗i = 0∀i = 1, 2⇒ x∗′i = 0 and equations
7 produce the differential equation system

w′i = −
(β + δ)wi + 2ν (z − ζ)

βz
, i = 1, 2;
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whose solution is

wi (z) = Kiz
−

β+δ
β + 2ν

(

ζ

β + δ
− z

2β + δ

)

, i = 1, 2; (17)

where Ki is a constant of integration.

The following lemma provides a sufficient condition for the system to remain
in the cornered scenario once reaching it:

Lemma 1 Let z̃ be the least z satisfying xi (z) = 0 and ẑ > z̃ that satisfying
xj (z) = 0. A sufficient condition for xi (z) = xj (z) = 0∀z > ẑ is that

wi (ẑ) ≥
2ν

β + δ
(ζ − ẑ) .

PROOF. At ẑ, wi (ẑ) ≤ wj (ẑ). By equation 17, then, Ki ≤ Kj. For the
system to remain cornered it is sufficient that w′i (z) , w

′
j (z) ≤ 0∀z > ẑ. Dif-

ferentiation of equation 17 converts this requirement into

Kj ≥ Ki ≥ −
2βν

(β + δ) (2β + δ)
z

2β+δ
β ≤ 0,∀z > ẑ.

The inequality in Kj is thus automatic if that in Ki holds. That in Ki holds
if it holds at z = ẑ as Ki is fixed but the RHS decreases in z. Isolating Ki (as
determined at ẑ) in equation 17 and substituting into the inequality produces

[

wi (ẑ)− 2ν

(

ζ

β + δ
− ẑ

2β + δ

)]

ẑ
β+δ
β ≥ − 2βν

(β + δ) (2β + δ)
ẑ

2β+δ
β .

Some manipulation produces the result.

3 Conditions for MPE

As noted above, solutions to systems 8, 11 and 17 are non-unique and generally
do not support MPE. This section therefore establishes conditions for the
assessment of particular solutions based on those presented in Rowat (2002).

First, some terminology is defined.

Definition 2 A system of differential equations is

A (s) s′ = f (s) ; (18)
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where s is an n-vector dependent on its nth element, the independent state

variable; A (·) is an n× n matrix, s′ ≡
[

ds1
dsn

, . . . , dsn
dsn

]>

the n-vector of deriva-

tives and f (·) is an n-vector.

As the elements of A and f need not be continuous, equation 18 is sufficiently
general to address transition between regimes (e.g. systems 8, 11 and 17).

In what follows, s will be interpreted either as

s = [w1 (z) , w2 (z) , z]
> ;

or as
s = [w1 (z (t)) , w2 (z (t)) , z (t) , t]

>
.

This latter, more complicated interpretation is used in Section 4 as systems
8, 11 and 17 are autonomous in t but not in z. Autonomy in t allows Taylor
expansion about t0 = 0, simplifying many equations without loss of generality.

Definition 3 A path, s, is a solution to system 18.

Definition 4 The point σ = (σ1, . . . , σn) lies on path s if s = σ for some sn
in the state’s domain.

Three types of points are now defined: non-invertible points at which a path
ceases to be a function by ‘doubling back’ through the domain; singular points
lying on more than one path; and regular points.

Definition 5 The point σ is

(1) a non-invertible point of system 18 if it lies on a path s such that:
(a)

∂si

∂sn

∣

∣

∣

∣

∣

σ

= ±∞

for some coordinate i; and
(b) ∃δ > 0 s.t. path s is not defined at either of {σi − ε, σi + ε} ∀ε s.t.

δ > ε > 0.
(2) a singular point of system 18 if it lies on at least two distinct paths, s

and ŝ;
(3) a regular point of system 18 otherwise.

Figure 1 illustrates these definitions. If z is the state variable, the non-invertible
points are all (w = 0, z 6= 0), the singular point (w = 0, z = 0), and the regular
points all (w 6= 0, z).

Refine the non-invertible points further:

Definition 6 A point σ is a truly non-invertible point of system 18 if it is
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z

w (z)

Fig. 1. A simple example of a singularity at the origin: w dw
dz

= z.

non-invertible and if det (A (σ)) = 0. The path on which σ lies is then truly
non-invertible as well.

Definition 7 A point σ is a quasi-non-invertible point of system 18 if it is
non-invertible but not truly so. The path on which σ lies is then quasi-non-
invertible as well.

All the non-invertible points in Figure 1 are truly so. Quasi-non-invertible
points include kinks, which typically occur during passage between regimes.

Definition 8 A candidate MPE strategy is a path s where:

(1) w = [s1, s2]
> and z = s3;

(2) w (z) is a function mapping from Z to <2;
(3) A and f are defined according to systems 8, 11 and 17 as appropriate.

3.1 Sufficient conditions to disqualify candidate strategies

Lemma 9 Candidate MPE strategies containing non-invertible points cannot
be considered as MPE strategies.

This follows directly from the requirement that a candidate strategy be a func-
tion defined over the whole domain. Otherwise, other agents cannot otherwise
form conjectures about an agent’s play under all possible circumstances and,
therefore, cannot form a best response.

Lemma 10 Candidate MPE strategies that set Wi (z) > 0 for any z ∈ Z

cannot be considered as MPE strategies.
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PROOF. As payoff function 2 is bounded above by zero for all z, so is the
value function, Vi ().

For reasons that will become apparent in the numerical analysis, it is also
important to eliminate strategy pairs for which (x1 (0) , x2 (0)) = 0.

Lemma 11 Strategy pairs which set (x1 (0) , x2 (0)) = 0 cannot be considered
as MPE strategies.

PROOF. Assume that the x∗i , i ∈ {1, 2} that maximises the RHS of Bellman
equation 4 is zero at z = 0. The ensuing differential equation is then

W ′
i (z) = −

δWi (z) + ξ2 + ν (z − ζ)2

βz
; (19)

with solution

Wi (z) =
Ci

z
δ
β

− ν

2β + δ
z2 +

2νζ

β + δ
z − ξ2 + νζ2

δ
; (20)

where Ci is a constant of integration.

If Ci > 0 then Wi (0) =∞, violating Lemma 10.

If Ci < 0 then x∗i = 0 requires that W ′
i (z) ≤ −2ξ which, with equation 19,

yields

δWi (z) + ξ2 + ν (z − ζ)2 ≥ 2βξz.

Replacing the Wi (z) term with that in equation 20 produces

2βν

2β + δ
z

2β+δ
β + δCi ≥ 2β

(

ξ +
νζ

β + δ

)

z
β+δ
β .

This inequality fails at z = 0 for Ci < 0.

If, finally, Ci = 0 then differentiating equation 20 with respect to z and re-
quiring that W ′

i (z) ≤ −2ξ produces

(β + δ) ξ + νζ

β + δ
≤ ν

2β + δ
z.

This also fails at z = 0.
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3.2 Necessary and sufficient conditions for MPE

Until now, discussion has focussed on disqualifying paths from consideration
as MPE strategies. Conditions for determining when candidates are MPE
strategies are in Rowat (2002, App. A).

4 Singularities

The unique symmetric linear MPE passes through a singularity in the solution
to symmetric equation 10. As an analogous situation may hold in the case of
asymmetric play, sufficient conditions for a locus of points through which two
paths pass are developed. These conditions are then applied to the systems of
differential equations 8 and 11. The first system is found to have a singularity
locus based on a conic section, although with points removed. The second does
not have a singularity locus. Singularities are not sought in system 17 as its
explicit solution may be seen not to yield them.

4.1 Theory

This section uses the following notation and assumptions:

(1) let s = s (t) (thus s = (w1 (z (t)) , w2 (z (t)) , z (t) , t) in the present prob-
lem) and rewrite the prototypical differential equation 18 as

A (s) ṡ = f (s) ; (21)

where derivatives of s (t) with respect to t are . . . s, s̈,
...
s and so on.

Therefore the sn of equation 18 becomes t here. Definition 5, defining
non-invertible, singular and regular points, is not modified.

(2) denote singular points by σ.
(3) set t = 0 at σ; as the system is autonomous in t no generality is lost.
(4) define

a
(k)
ij ≡

∂

∂sk
aij|σ and f

(k)
i ≡ ∂fi

∂sk
|σ;

where [aij] = A and [fi] = f . (As the specific aij and fi explored here
are members of C∞ this differentiability assumption is not restrictive.)

(5) when rank (A (s)) < n let the vector q 6= 0 (resp. c 6= 0) be a linear
combination of the columns (resp. columns) of A so that A (s) · q = 0

(resp. c ·A (s) = 0). When rank (A (s)) = n− 1, c and q are unique up
to a scalar multiple; when A is symmetric as well let c′ = q.
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Definition 12 An m-singularity is a locus of singular points, each lying on
exactly m ≥ 2 distinct paths.

Then:

Theorem 13 Given system 21, in which aij, fi ∈ C1, sufficient conditions for
the point σ to be a 2-singularity are:

(1) (non-invertibility) A (σ) has rank n− 1;
(2) (spanning) f (σ) = A (σ) · r for some n -vector r; and
(3) (roots) the quadratic equation

0 = λ2
[

∑

i,j,k a
(k)
ij ciqjqk

]

+λ
∑

i ci
[

2
∑

j,k a
(k)
ij rjqk −

∑

k f
(k)
i qk

]

+
∑

i ci
[

∑

j,k a
(k)
ij rjrk −

∑

k f
(k)
i rk

]

.

(22)

has exactly two distinct real roots in λ given the vector r from the span-
ning condition.

The intuition behind these conditions is illustrated in Figure 1. The non-
invertibility condition (w = 0) imposes a barrier, not to paths, but to func-
tions. At the origin, where spanning and non-invertibility hold, however, a slit
in the barrier allows crossing paths to remain functions. The roots condition
then ensures that the crossing paths are distinct.

The theorem is proven by means of two lemmata.

Lemma 14 Paths through σ that satisfy the conditions of Theorem 13 have
one of two slopes.

PROOF. At σ the ith equation of system 21 is

n
∑

j=1

aijσ̇j = fi. (23)

As A (σ) is singular, this fails to determine σ̇. Therefore take advantage of
t0 = 0 and expand the elements of equation 23 for

∑n
j=1

{

aij +
∑

k a
(k)
ij σ̇kt+

1
2

[

∑

k,l

∂a
(k)
ij

∂sl
σ̇kσ̇l + a

(k)
ij σ̈k

]

t2 +O (t3)

}

×
{

σ̇j + σ̈jt+
1
2

...
σjt

2 +O (t3)
}

=
{

fi +
∑n

k=1 f
(k)
i σ̇kt+

1
2

[

∑

k,l
∂f

(j)
i

∂sk
σ̇kσ̇l +

∑

j f
(j)
i σ̈j

]

t2 +O (t3)
}

.

(24)
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Equality of the coefficients of the powers of t thus produces an infinite number
of equations; that in t0 is simply equation 23. As rank (A (σ)) = n− 1, σ̇j is
non-unique. Define it to be

σ̇j = rj + λqj; (25)

where λ is a scalar and qj is the jth component of q. At this point any λ

satisfies equation 25.

By equality of the coefficients of the t1 terms

∑

j

aijσ̈j = −
∑

j,k

a
(k)
ij σ̇jσ̇k +

∑

k

f
(k)
i σ̇k. (26)

As A (σ) is singular, premultiply by c to set the LHS term in equation 26 to
zero and substitute in the non-unique σ̇j = rj + λqj for

∑

i,j,k

cia
(k)
ij (rj + λqj) (rk + λqk) =

∑

i,k

cif
(k)
i (rk + λqk) ; (27)

a quadratic in λ. As λ’s premultipliers are non-singular, this reduces the non-
unique σ̇j to no more than two distinct values. The third condition of Theorem
13, on equation 27 (= equation 22), then ensures that σ̇j has two distinct, real
values.

As singularity of A (σ) prevented derivation of σ̇ from equation 23, it also
prevents derivation of σ̈ from equation 26. The next lemma uses the above
technique to derive σ̈.

Lemma 15 A path through a point σ, satisfying the conditions of Theorem
13, is uniquely identified by its slope at σ.

PROOF. From equation 26, singularity of A (σ) allows

σ̈j = pj + µqj;

where µ is a scalar and qj is again the jth component of q. Equating the
coefficients of the t2 terms in equation 24 yields

∑

j

aij
...
σj =

∑

j,k
∂f

(j)
i

∂sk
σ̇jσ̇k +

∑

j f
(j)
i σ̈j −

∑

j,k,l

∂a
(k)
ij

∂sl
σ̇jσ̇kσ̇l

−∑j,k a
(k)
ij σ̇jσ̈k − 2

∑

j,k a
(k)
ij σ̇kσ̈j.

(28)

Premultiply by c as before for

0 =
∑

i,j,k ci
∂f

(j)
i

∂sk
σ̇jσ̇k +

∑

i,j cif
(j)
i (pj + µqj)−

∑

i,j,k,l ci
∂a

(k)
ij

∂sl
σ̇jσ̇kσ̇l

−∑i,j,k cia
(k)
ij (pk + µqk) σ̇j − 2

∑

i,j,k cia
(k)
ij σ̇k (pj + µqj) .

(29)
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As this is linear in µ and as µ’s premultipliers are non-singular, a unique µ

satisfies it. Hence, given σ̇j, σ̈j is unique.

Obtain the coefficients of the higher order terms, tn, n > 2, by further differ-
entiating equation 28. As this shows

...
σj to be a linear function of the σ̈ terms,

higher order derivatives, dn+1σj
dtn+1 , are also linear in dnσj

dtn
,∀n > 2. Thus, given

any set of lower order derivatives,
{

σ̇j, σ̈j, . . . ,
dnσj
dtn

}

, dn+1σj
dtn+1 is unique.

Theorem 13 did not discuss necessary conditions for pragmatic reasons: failures
of, for example, its rank condition become quite complicated. Were rank (A (σ)) =
n− 2, there would be independent n-vectors c1 and c2 such that c1 ·A (σ) =
c2 ·A (σ) = 0. Differentiating system 21, produces

c1 (A
′ṡ+As̈) = c1f

′; and c2 (A
′ṡ+As̈) = c2f

′;

or, by the definition of the c vectors,

c1A
′ṡ = c1f

′; and c2A
′ṡ = c2f

′.

If

σ̇ = rj + λ1q1,j + λ2q2,j ;

where A (σ) · q1 = A (σ) · q2 = 0 and λ1 and λ2 are constants, then each of
these defines a conic in λ1 and λ2. As both must hold, the conics’ intersection
defines feasible values of λ1 and λ2, some of which may be in the complex
hyperplane.

4.2 Singularities in system 8

The preceding analysis of 2-singularities is now applied to system 8 by first
examining the points satisfying each of the conditions of Theorem 13 and then
assembling them to describe the 2-singularity locus. The 2-singularity locus is
a conic section, with some points removed. Some of these removed points are
regular rather than singular; others allow no real paths to pass.

4.2.1 The non-invertibility and spanning conditions

Lemma 16 The points of system 8 satisfying Theorem 13’s non-invertibility
condition define a cone.
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PROOF. In system 8, Theorem 13’s non-invertibility condition becomes

g2 =
1

4
w1w2. (30)

This surface is the union of the generating lines

g =
1

2
pw1 =

1

2

1

p
w2; (31)

parameterised by the finite p 6= 0. The lines in this family are non-parallel and
pass through the common (w1, w2, z) =

(

0, 0, 2ξ
β

)

.

Lemma 17 The points of system 8 satisfying Theorem 13’s non-invertibility
and spanning conditions form a conic section and a line.

PROOF. As A (σ) is non-invertible and, by spanning, its columns are pro-
portional to each other, write system 8 as

ρ







2g

w2






= (β + δ)







w1

w2






+ 2ν (z − ζ)







1

1






;

where ρ is some scalar. Solving ρ out of the two equations and applying equa-
tion 30 produces

(2g − w2) [g (β + δ)− ν (z − ζ)] = 0; (32)

thus defining two planes. The first’s intersection with equation 30’s non-
invertibility cone is the degenerate conic w1 = w2 = 2 (βz − 2ξ), a line. The
intersection of the second term with the cone is not degenerate; it forms a
conic section.

Lemma 18 Lemma 17’s conic section has two branches in (w1, w2, z) space
when

β (β + δ) [β (β + δ) + 2ν] > 3ν2; (33)

and one otherwise.

PROOF. The axis of Lemma 16’s cone lies on the w1 = w2 plane. As the
intersection of the cone with Lemma 17’s plane is symmetric in w1 and w2,
whatever branches it has must cross the w ≡ w1 = w2 plane. Three lines on
the symmetric plane are relevant to this proof: the generating lines

14
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z=
1

β

(

3

2
w + 2ξ

)

⇔ p = −1;

z=
1

β

(

1

2
w + 2ξ

)

⇔ p = 1;

and the spanning line when A is non-invertible:

z =
w (β + δ) + 2ξ (β + δ) + νζ

β (β + δ) + ν
. (34)

When the spanning line intersects both generating lines in the same half cone
(with vertex at (w, z) =

(

0, 2ξ
β

)

) the conic section has one branch; otherwise
it has two. The intersections, at

(w, z)=

(

2ν (βζ − 2ξ)

β (β + δ) + 3ν
,
2ξ (β + δ) + 3νζ

β (β + δ) + 3ν

)

; and (35)

(w, z)=

(

−2ν (βζ − 2ξ)

β (β + δ)− ν
,
2ξ (β + δ)− νζ

β (β + δ)− ν

)

; (36)

are both in the same half cone when the product of their w-coordinates is
positive:

β (β + δ) [β (β + δ) + 2ν] < 3ν2.

Otherwise the intersections are in opposite half cones.

4.2.2 The roots condition

Lemma 19 shows that Theorem 13’s roots condition fails in a simple and
specific way. As failure occurs on Lemma 17’s conic section, the conic’s locus
of points satisfying Theorem 13’s conditions is punctured. The subsequent
lemmata then show more general ways in which the roots condition fails.

Lemma 19 The line defined in Lemma 17 fails to satisfy Theorem 13’s con-
dition 3.

The argument used in the proof is a special case of that in Theorem 13.

PROOF. Along Lemma 17’s line, system 8 becomes

w′1 + w′2 =
2

w
[(β + δ)w + 2ν (z − ζ)] . (37)

Substituting this expression into system 8’s derivative with respect to z yields

15
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





1
2
w 1

2
w

1
2
w 1

2
w













w′′1

w′′2






+







δ + 2ν z−ζ
w

1
2
w′1

1
2
w′2 δ + 2ν z−ζ

w













w′1

w′2







=(β + δ)







w′1

w′2






+ 2ν







1

1






.

The premultiplying vector [c1, c2] = [1,−1] cancels the second derivatives to
produce

(

2ν
z − ζ

w
− β

)

(w′1 − w′2) = 0; (38)

the specific form of quadratic condition 22. With the substitution w′i = ri+λqi
and q = c>, equation 38 becomes

(

2ν
z − ζ

w
− β

)

(r1 − r2 + 2λ) = 0;

which does not have two real, distinct roots in λ.

The preceding lemma dealt with one of two possible cases of symmetric play
satisfying non-invertibility, that corresponding to the generating line with pa-
rameter p = 1. A similar process confirms that a point on the p = −1 line,
the other case, does satisfy the conditions of Theorem 13; this produces the
2-singularity at the intersection of the linear solutions to the symmetric dif-
ferential equation 10, explored more fully in Rowat (2002).

More generally, there are two ways in which the quadratic equation 22 will fail
to have distinct, real roots. The next two lemmata examine these possibilities.
First, the coefficient of the square term may be zero:

Lemma 20 In system 8, the coefficient of λ2 in equation 22 is zero iff p = 1.

PROOF. At non-invertibility, the relationship g = 1
2
pw1 = 1

2
1
p
w2 allows sys-

tem 8 to be written

g







1 1
p

p 1













r1

r2





 = 2







(β + δ) 1
p
g + ν (z − ζ)

(β + δ) pg + ν (z − ζ)





 . (39)

Vectors that set A · q = 0 and c ·A = 0 are

q = (1,−p, 0)> ; and c =

(

1,−1

p
, 0

)

.
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From equation 22,
∑

i,j,k

a
(k)
ij ciqjqk 6= 0;

which expands to





2
∑

j

qj
(

a
(1)
1j − pa

(2)
1j

)



− 1

p





2
∑

j

qj
(

a
(1)
2j − pa

(2)
2j

)





=
[(

a
(1)
11 − pa

(2)
11

)

− p
(

a
(1)
12 − pa

(2)
12

)]

−1

p

[(

a
(1)
21 − pa

(2)
21

)

− p
(

a
(1)
22 − pa

(2)
22

)]

=
1

2
− p− 1

p

[

1

2
p2 − p

]

=
3

2
− 3

2
p =

3

2
(1− p) 6= 0.

The quadratic equation may also fail to have distinct, real roots by having a
negative discriminant:

Lemma 21 Equation 22 has a positive discriminant in system 8 iff

[β + δ]2 p4 − [β2 + 3ν + βδ] p3 − [2βδ + δ2 − 6 ν] p2

− [β2 + 3ν + βδ] p+ [β + δ]2 > 0;

(40)

when p 6= 1.

PROOF. See Appendix B.

It is not clear how to interpret the failure of condition 40: no real paths pass
through the points concerned.

For some calibrations, inequality 40 holds for all p:

Lemma 22 Inequality 40 holds for all p iff

8ν > 3β2 + 8βδ + 4δ2 + ν
2β (β + δ) + 3ν

(β + δ)2
. (41)

PROOF. As inequality 40 holds for p = 0 only consider those p 6= 0. Divide
inequality 40 by p2 6= 0 for

(β + δ)2 q2 −
(

β2 + 3ν + βδ
)

q −
(

2βδ + δ2 − 6ν
)

− 2 (β + δ)2 > 0; (42)
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where q ≡ p+ 1
p
. As the coefficient of q2 is positive its stationary point, at

q∗ =
β (β + δ) + 3ν

2 (β + δ)2
;

is a minimum. Substituting this into inequality 42 yields

− [β (β + δ) + 3ν]2

4 (β + δ)2
−
(

2βδ + δ2 − 6ν
)

− 2 (β + δ)2 > 0;

which may be manipulated to produce condition 41.

4.2.3 The 2-singularity locus

The various statements made above may now be assembled into:

Theorem 23 The 2-singularity locus of system 8 coincides with the conic
section defined in Lemma 17 except when:

(1) p = 1 (as per Lemma 19); or
(2) p is such that inequality 40 fails.

While the conic section may have one or two branches, the locus never ceases
to exist as a result of the auxiliary condition:

Lemma 24 The auxiliary condition wi ≥ −2ξ, i = 1, 2 cannot remove the
entire 2-singularity locus.

PROOF. Consider the intersection of the non-invertibility line with param-
eter p = −1 and the objects satisfying non-invertibility and spanning in equa-
tion 32; their intersection satisfies the conditions of Theorem 13. This point,
identified in equation 35, always satisfies (w, z) > (−2ξ, 0). Therefore, this
part of the planar conic is always a 2-singularity.

It may also be of interest to know when the 2-singularity locus has two
branches:

Lemma 25 When condition 41 holds, the 2-singularity locus in system 8 has
two branches iff

ν (βζ − 2ξ)

β (β + δ)− ν
< ξ. (43)

and inequality 33 holds.
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PROOF. Inequality 33 in Lemma 18 provided a necessary and sufficient
condition for the conic to have two branches. The non-invertibility gener-
ating line with parameter p = 1 intersects the spanning line in equation 34
at w1 = w2 > −2ξ iff inequality 43 holds. As, from Lemma 24, the gener-
ating line with parameter p = −1 always intersects the spanning line at a
w1 = w2 > −2ξ, the proof follows.

As a concluding note, cases in which rank (A (σ)) < n − 2 have not been
examined here. Cases of n − d non-invertibility, where d > 2, are impossible
in system 8 as n = 2. The d = 2 case requires that A (σ) = 0, hence w1 =
w2 = g = 0 ⇒ z = 2ξ

β
, conditions that are only satisfied at the apex of

the non-invertibility cone. Spanning would then require that z = ζ so that
singularities in this case would require the parameter restriction 2ξ = βζ.
Given the non-genericity of this restriction, and the costs of presenting the
more general theory to address this case, it is not examined here.

4.3 Singularities in system 11

As wi ≤ −2ξ the minimum rank (A (σ)) in system 11 is n − 1. The only
singularities that need to be considered here are 2-singularities as the worst
case, from the point of view of multiple solutions, sets rank (A (σ)) = n − 1
but Theorem 13’s spanning condition holds (so that there is a solution) along
with its roots condition (so that there are two solutions).

Theorem 26 There are no 2-singularities in system 11.

PROOF. Non-invertibility requires h = 0, so that wj = 2 (βz − ξ) and







0 0

1
2
wi 0













w′j

w′i





 =







(β + δ)wj + 2ν (z − ζ)

(β + δ)wi + 2ν (z − ζ)





 .

If spanning occurs, the first equation produces, with the above implication of
h = 0 for wj and z,

(wj, z) = (c, d) ;

where c and d are defined in equations 13 and 14. At this point, the second
equation must satisfy

1

2
wiw

′
j = (β + δ)wi + 2ν (z − ζ) ;
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or, using the first equation,

w′j = 2 (β + δ)

[

1 +
1

wi

2ν (ξ − βζ)

β (β + δ) + ν

]

.

As wi ≤ −2ξ by construction of the scenario, w′j is unique.

5 Coding and execution

Traditional finite difference methods are used here, implemented in C for
speed. The code is available upon request from the author. The bulk of this
section describes the implementation of the conditions for disqualifying candi-
date paths developed in Section 3. Issues relating to the precision of numerical
calculations are also addressed.

5.1 Initial conditions

The finite difference method is implemented by integrating forward in z from
a grid of initial conditions, (w1 (0) , w2 (0)). The upper and lower bounds of the
initial conditions grid are somewhat arbitrarily set. The lower bound is usually
set at wi (0) = −3ξ, i = 1, 2 as those paths starting from wi (0) ≤ −2ξ, i = 1, 2
imply x (0) = 0 and are discarded under Lemma 11. Similarly, the upper
bound is generally set to wi (0) = 0, implying xi (0) = ξ. This is a reference
to the case of symmetric play as xi (0) > ξ paths there could be discarded
for violating a transversality condition (q.v. Rowat, 2002). This upper bound
may not be meaningful in the case of asymmetric play.

As unique paths are not generally found by a grid not designed to look for
them, the 2-singularity locus of system 8 is also computed. Paths are then
computed off of points on this locus. Points on the locus satisfy equations 30
(non-invertibility) and 32 (spanning given non-invertibility). As Lemma 19’s
distinct roots condition eliminated the possibility that 2g = w2, 32 reduces to

g =
ν (z − ζ)

β + δ
.

With g defined in equation 9, determination of the locus reduces to a problem
of three unknowns and three equations (one of them quadratic). The locus
is calculated by setting w1 = −2ξ and using a non-linear solver to deter-
mine (w2, z); w1 is then varied and the procedure repeated until reaching the
singular point on the w1 = w2 symmetric plane.
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5.2 Testing paths

Paths are tested against various conditions as they evolve from initial condi-
tions. Two tests are used to detect truly non-invertible paths. The first tests
for a sign change in the determinant. As computation may become slow around
these points, the second tests when the determinant falls in absolute value to
less than some small tolerance.

z

w (z)

cusp

inverted inflection

Fig. 2. Small determinants but still functions: w2 dw
dz

= z

This second test falsely rejects functions of the sort illustrated in Figure 2.
Here, the determinant becomes small as w → 0.

Define points of the sort at w = 0, z 6= 0 in Figure 2 by:

Definition 27 An inverted inflection point of a function w () is a point w (z)
at which dw

dz
= ±∞ and d2z

dw2 = 0. If w () is a vector, these relationships must
hold for all elements of the vector w ().

Therefore:

Theorem 28 There are no inverted inflection points in system 8.

PROOF. The definition’s first condition holds at system 8’s non-invertible
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points, g2 = 1
4
w1w2. Substitution into the second condition produces

d2z

dw2
i

|NI =
g − 1

4
wj

(β + δ)
(

g − 1
2
wj

)

wi + 2ν (z − ζ)
(

g − 1
2
wi

) , i 6= j ∈ {1, 2} .

For this to be zero it must be that g = 1
4
wj, implying (with the non-invertible

condition) that g = wi. Further substitution then allows

d2z

dw2
i

|NI = −
0

(β + δ) g2 − ν (z − ζ) g
.

Necessary and sufficient conditions for d2z
dw2

i

|NI = 0 are now that g = 1
4
wj =

wi 6= 0 for both i = 1, 2, a contradiction. 2

Theorem 29 There are no inverted inflection points of system 11.

PROOF. Now

d2z

dw2
j

=
1
2

(β + δ)wj + 2ν (z − ζ)
− h (β + δ)

[(β + δ)wj + 2ν (z − ζ)]2
;

for the non-cornered agent. At non-invertibility h = 0 so that

d2z

dw2
j NI

=
1
2

(β + δ)wj + 2ν (z − ζ)
6= 0.

As there are therefore no invertible inflection points along wj (), there are none
in system 11.

Now define points of the sort at (w, z) = 0 in Figure 2 by:

Definition 30 A cusp of a function w () is a point w (z) at which

(1) w (z) is finite; and
(2) w′ (z) is not defined; and
(3) either limz+ w′ (z) =∞ and limz−w

′ (z) = −∞, or vice versa.

When w () is a vector, these conditions must hold for all elements of the vector
w.

This definition is selected to identify points at which det (A) approaches zero.
Notably, it excludes kinks and, by its vertical orientation, many of the usual
cusps.

2 If the denominator is also zero then L’Hôpital’s rule sets the numerator to 1
2 6= 0.
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In system 8, the cusp’s infinite derivatives require that g2 = 1
4
w1w2 (non-

invertibility). To identify points without a defined derivative, consider a solu-
tion path to be the parameterised curve (w1 (s) , w2 (s) , z (s)), with parameter

s. As cusps have no tangents, they require
(

dw1(s)
ds

,
dw2(s)
ds

,
dz(s)
ds

)

= 0. Parame-
terising with s = t reduces this condition to

(

dw1

dz
,
dw2

dz
, 1

)

ż = 0;

which is equivalent to ż = g = 0.

The code therefore identifies paths for which g ≈ 0 when approaching g2 =
1
4
w1w2 in system 8. This will not generally find isolated cusps.

A stronger statement may be made about system 11:

Theorem 31 There are no cusps in system 11.

PROOF. For a cusp to exist, the numerator in system 11’s first equation

w′j =
(β + δ)wj + 2ν (z − ζ)

h
;

must not change sign as h passes through zero. This requires that

z 6= (β + δ) ξ + νζ

β (β + δ) + ν
.

Similarly, as system 11’s second equation is

w′i =
[(β + δ)wi + 2ν (z − ζ)]h− 1

2
wi [(β + δ)wj + 2ν (z − ζ)]

h2
;

its numerator must change sign while h passes through zero. This requires
that

z =
(β + δ) ξ + νζ

β (β + δ) + ν
;

a contradiction.

Tests for other conditions that discard paths from further consideration have
also been implemented. Quasi-non-invertible paths are identified by sign tests
on the derivatives when moving across wi = −2ξ. Paths setting Wi (z) > 0 for
some z are detected by means of Bellman equation 4. As this relates Wi (z)
and W ′

i (z), and as integration determines W ′
i (z), Wi (z) is easily calculated.
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A calculation implementing Lemma 1 determines when a path along which
both agents have cornered stays in the corner.

If any of these conditions is met, or if z̄, the (finite) upper limit of integration,
is reached, integration terminates and the next path in the grid is selected.
An upper limit of integration of z̄ = 1 × 1017 has sufficed to ensure that all
paths selected by the grid method fail at least one of these conditions before
reaching z̄. 3

The integration routines used are from the Numerical Algorithms Group (NAG).
4 For initial value problems with high accuracy requirements, the NAG library
recommends Adams methods when the system is not stiff. 5 The present code
therefore uses the d02cjc ordinary differential equation solver, a variable-
order, variable-step Adams method. When d02cjc fails to make progress the
d02ejc ordinary differential equation solver for stiff systems sometimes makes
more headway; it uses a variable-order, variable-step backward differentiation
formula. NAG sample code often uses the square root of machine zero as the
tolerance; on the present hardware this convention implies that TOL= 10−8.

5.3 Conditioning

As numerical computation uses finite approximations to real numbers, certain
operations risk dropping the number of significant digits carried to below
acceptable levels. The condition number of a system is a crude approximation
to the number of digits lost: when expressed as a power of 10, the exponent
reflects the number of significant digits lost.

Condition numbers may be calculated in a number of different ways, usually
in agreement as to order of magnitude. Particularly easy to compute is that

3 The NAG routine d02cjc chooses its first step size as a function of z̄−z. Increasing
the upper limit of integration has caused one or two paths, originally discarded as
non-invertible, to become discarded for setting Wi (z) > 0, and vice versa. As,
in either case, these paths were discarded, this instability is unlikely to affect the
equilibrium set.
4 The implementation code is CLSOL05DA, the Mark 5 C library for Sun SPARC
Solaris Double Precision operating systems.
5 The stiffness ratio of a system is defined as

s ≡ maxi µi
mini µi

, i ∈ {1, 2} ;

where µi is the real component of the ith eigenvalue of the (linearised) system. An
ODE system in z is stiff if µi < 0, i = 1, 2 and s >> 1. A nonlinear system in which
s varies is stiff in an interval I when the above hold and z ∈ I (Itô, 1986, 303.G).
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based on the L∞ norm:

Definition 32 For a matrix A with elements aij and inverse A
−1 with ele-

ments a−1
ij the L

∞ norm condition number is

cond∞ (A) ≡ max
i,j
{|aij|} ×max

i,j

{∣

∣

∣a−1
ij

∣

∣

∣

}

.

As a Sun SuperSPARC 1000 with 15 - 16 significant digits is used, convention
calls a path poorly conditioned when cond∞ > 1010 (Judd, 1998, §3.5).

The condition numbers of systems 8 and 11 are

cond∞ (A) =
max

{

1
4
w2

1,
1
4
w2

2, g
2, 1

}

|det (A)| , wi ≥ −2ξ, i = 1, 2; (44)

and

cond∞ (A) = max

{

(

wi

2h

)2

, 1

}

, wi ≤ −2ξ, i = 1, 2; (45)

respectively. In both cases, a non-invertible A is sufficient for poor condition-
ing. Call a path acceptably poorly conditioned if it sets det (A) ≈ 0 and if its
neighbours are also poorly conditioned. Discard these paths from considera-
tion as candidates: it is unlikely that the path has been falsely identified as
non-invertible (a sufficient condition for discarding it) due to a round-off error
as its neighbours suffer the same fate.

Conversely, if a large numerator causes poor conditioning, this may be unac-
ceptable and more careful investigation would be warranted.

6 Results

Table 1 displays the parameter values used in the analyses presented here;
the labels indicate whether they give rise to multiple or unique MPE when
play is symmetric. Inequality 41, which described when the paths through a
singularity would always be real, holds for neither calibration, allowing the
possibility of a more complicated 2-singularity locus.

In the ‘multiple’ calibration, either (p− 1)2 < 0 or p2 − 161p + 1 > 0, for
inequality 40 to hold. The former yields a contradiction, the latter that p .

.0062 or p & 160.9938 (where the values are each others’ reciprocals). Thus, by
equation 31, w1 ≈ 25, 919w2 is the most extreme asymmetry possible before
the 2-singularity locus disappears. Here, the boundary of wi = −2ξ is hit when
w1 = −3 and w2 ≈ −1.04, well within these limits. The 2-singularity locus is
therefore not complicated.
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β δ ν ξ ζ

Multiple symmetric EQ 1
10,000 0 5.4× 10−7 1.5 760

Unique symmetric EQ 1
115

1
100 5.4× 10−7 1.5 760

Table 1
Sets of parameter values most commonly used

The results generated by the multiple symmetric equilibria case are presented
in Figure 3 and those of the unique symmetric equilibrium case in Figure 7.
The axes represent the initial conditions w1 (0) and w2 (0); w (0) ∈ [−3ξ,−2ξ]
corresponds to starting play in the corner, x (0) = 0. The regions displayed
represent the outcome of the paths starting with these values. Under both
calibrations the linear equilibria are unique in the class of linear equilibria,
consistent with the result in Lockwood (1996).

6.1 Multiple symmetric equilibria

6

- w2 (0)

w1 (0)

−2ξ

−ξ

0

Y

upward sloping
singular

non-linear
MPE continuum

Wi (z) > 0

truly non-
invertible

cornered
paths

truly non-
invertible
(poorly

conditioned)

quasi non-
invertible

±

quasi-non-
invertible

j

downward sloping
singular

9

...

...

...s1

s1

w′i (−2ξ) =∞

}

w′i (−2ξ) = −∞

i
x̂b

À

U

Fig. 3. Outcome as a function of 100 × 100 initial conditions (multiple symmetric
equilibrium)
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z

x

SSL: x = β
2
z

non-invert.

xa
xb

b

ξ + 1
2
a

x6

x5

x4

x0

x1

x2

x3

ζ

ξ

Fig. 4. Symmetric play results from Rowat (2002, Figure 2 )

The parameter values generating multiple symmetric equilibria produce Figure
3. Comparing the results along the symmetric axis to those in Figure 4, re-
produced from Rowat (2002), finds that they match. Paths with wi (0) < −2ξ
never set xi > 0, corresponding to the x0 analytical paths. Above wi (0) = −2ξ
there is a region of MPE paths, the x̂3 family. The subsequent truly non-
invertible paths correspond to the x4 and x5 analytical paths. Finally, those
paths setting Wi (z) > 0 are the unbounded x6 paths.

Results from asymmetric play reveal no evidence of regions of asymmetric
MPE. Assymetries as small as machine zero lead the asymmetric neighbours
of the continuum of MPE paths to quasi-non-invertibility. This occurs as the
symmetric MPE strategies obey equations 17 after cornering; their neighbours
obey equations 11.

As the grid applied does not reveal asymmetric MPE, one dimensional or
isolated MPE are now sought in the boundaries between regions.

First examine paths through the 2-singularity locus. Because normal integra-
tion is not possible near this locus the following method is used:

(1) integration off of the locus initially occurs by solving quadratic equation
27 for λ. Knowledge of r then determines the two slopes, allowing initial
movement off the locus to be calculated.

(2) when the absolute value of det (A) exceeds zero by some tolerance, the
NAG integration routines are again used.

Figure 5 displays the results of this procedure. The paths increasing to the left
are x̂b and its asymmetric siblings; those increasing to the right are xa and its
siblings. The two loci of points for which these paths intersect z = 0 produce
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2500
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Fig. 5. Paths through and near the 2-singularity locus

the diagonal boundaries off the symmetric axis in Figure 3.

None of the asymmetric paths explored are found to be equilibria. The in-
creasing paths set Wi (z) > 0 while the decreasing paths become quasi-non-
invertible when they intersect wi = −2ξ. In the latter cases, paths closer to
the far end of the singularity locus actually loop back on themselves, passing
through the same point on the singularity locus. There is therefore no evidence
of new MPE paths along the singular locus.

Now investigate the boundary between the cornered and the (poorly condi-
tioned) truly non-invertible paths simply divides paths into those with zero
emissions initially and those with positive emissions.

The next boundaries to its north (near w1 (0) = −ξ) are explored by integrat-
ing along a section of initial conditions, s1 − s1, as displayed in Figure 6. The
southernmost of these paths becomes non-invertible with w2 very negative and
large. The second path starts at w1 (0) > −ξ; this returns from the corner,
but becomes quasi-non-invertible in doing so. The third path returns properly
from the corner but ultimately sets Wi > 0.

This pattern is repeated to the east-north-east, on the other side of w2 (0) =
−2ξ, with a single difference: while still becoming truly non-invertible, the
southernmost paths now start in the interior; they do not corner and they
remain well conditioned. The quasi-non-invertible paths again fail to leave the
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0 2500
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invertible

Fig. 6. Projections of paths through the s1 − s1 section of initial conditions

corner, while those that set Wi (z) > 0 do leave the corner (or never corner if
the initial conditions are large enough).

Integration along paths close to the NW border between the Wi (z) > 0 paths
and the quasi-non-invertible paths to their south shows that this border sets
w′i (−2ξ) =∞. Similarly, the border to its south, separating quasi- and truly
non-invertible paths marks w′i (−2ξ) = −∞. As none of these boundaries allow
the paths through them to be MPE, no evidence is found for asymmetric MPE.

Thus, confidence that asymmetric MPE strategies do not exist is high. None
are found, either by the initial grid search or by more specific searches attuned
to one dimensional loci; all of the poorly conditioned paths are acceptably so;
there is no evidence of cusps.

6.2 Unique symmetric equilibrium

As the results here are simpler than those above, they are presented in more
cursory fashion. Again, there is no evidence of asymmetric MPE. The sym-
metric axis of Figure 7 is consistent with analytical results under symmetric
play. Initially paths corner; now these paths are not just the x0 family but x̂a

and some x4 paths. When starting values are large enough for paths not to
corner they are the x4 and x5 paths. The grid of initial conditions displayed in
Figure 7 does not extend to sufficiently high initial conditions to demonstrate
the x̂b path and the x6 family but individual integration with initial conditions
up to wi (0) = ξ do reveal them.
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Fig. 7. Outcome as a function of 100 × 100 initial conditions (unique symmetric
equilibria)

Novel here are the large areas in which even the hardier d02ejc integration
routine fails. All individual paths explored approach the non-invertible h = 0,
accompanied by an exponential decline in one of the wi (z); these are therefore
acceptable examples of poor conditioning. The border through which section
s2 − s2 (indicated in Figure 7) passes illustrates: to its north, agent 2 corners
to approach system 11’s non-invertible surface; to its south, agent 2 hits the
system 8 non-invertible surface before cornering. Again, cusps have not been
detected.

7 Discussion

This paper suggests that the non-linear equilibria of Rowat (2002) are not
robust. Furthermore, it finds no evidence of new asymmetric MPE. This is
a weaker statement than a formal proof, which might be constructed by ex-
tending the proof technique used in Rowat (2002). In that case, all possible
families of solutions to equation 10 were identified on a phase diagram. Asym-
metric play simply adds dimensions: families of paths could be identified in
<3 and analogous arguments used. For example, if the paths to the ‘right’ of
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the singularity locus in Figure 5, between the paths through the singularity,
converged to xa they could be dismissed.

The symmetric system has one fewer equation and one fewer unknown than
does that presented here. As the equations are not linear, this counting tech-
nique should not account for the non-robustness of the continuum. Rather
it seems that symmetric play is simply a special case, exhibiting non-generic
properties. This feature of symmetric play may also produce the continuum
results found in non-linear quadratic models (Dockner and Sorger (q.v. 1996)
and the examples in Rowat (2002)).

Initially Wirl and Dockner’s model of a monopoly supplier and a monopsony
demander (Wirl and Dockner, 1995) seems to provide a counter-example to
this possible link between agent symmetry and multiplicity. In spite of their
agents’ asymmetry, they too find a continuum of MPE. They do this analyti-
cally, first summing the two differential equations describing candidate value
functions into a single one to define a new candidate value function. They
then follow the approach of Tsutsui and Mino (1990). This second step re-
duces confidence in their analysis for the reasons outlined in Rowat (2002).

The pleasant computational implication of the suspected uniqueness of MPE
strategies is that calculation of MPE for more than two agents is simplified.
Without control bounds this reduces to the solution of coupled Riccati equa-
tions. Control bounds likely complicate calculations. Uniqueness may also have
practical consequences for those situations reflected in this model: Pareto im-
provements cannot be obtained by coordinating on superior Nash equilibria
(cf. Radner, 1998, p. 8).

Finally, while the control bounds considered here are one-sided, analysis could
be extended easily to include an upper bound as well.

A The linear quadratic model with asymmetric agents

Generalise the instantaneous utility functions 2 to

ui (xi, z) = − (xi − ξi)
2 − νi (z − ζi)

2
, i = 1, 2;

but retain the linear equation of motion 1. System of equations 8 therefore
becomes







g 1
2
w1

1
2
w2 g













w′1

w′2





 =







(β + δ1)w1 + 2ν1 (z − ζ1)

(β + δ2)w2 + 2ν2 (z − ζ2)





 ; (A.1)
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where

g ≡ 1

2
(w1 + w2)− βz + (ξ1 + ξ2) .

The non-invertibility locus is still defined by g2 = 1
4
w1w2 but the spanning

condition is now

(β + δ1)w1w2 − (β + δ2) (2g)w2 + 2ν1 (z − ζ1)w2 − 2ν2 (z − ζ2) (2g) = 0;

an algebraic variety of degree two. This reduces to equation 32 if agents are
symmetric. Sample vectors involved in non-invertibility and spanning, accord-
ing to the notation of Definition 12 and Theorem 13, are then

q=

[

−sign(wi)

√

w1

w2

, 1, 0

]>

;

c=

[

−sign(wi)

√

w2

w1

, 1, 0

]

; and

r= g ×
[

2 (β + δ2) , 2
ν2

g
(z − ζ2) , 1

]>

.

System of equations 11 becomes







h 0

1
2
wi h













w′j

w′i





 =







(β + δj)wj + 2νj (z − ζj)

(β + δi)wi + 2νi (z − ζi)





 ;

where equation 12 is now

h ≡ ξj +
1

2
wj − βz.

Finally, equation 17 becomes

wi (z) = Kiz
β+δi
β + 2νi

(

ζi

β + δi
− z

δi

)

= z

{

Kiz
δi
β − 2νi

δi

}

+
2νiζi
β + δi

;

where Ki is a constant of integration.

Numerical integration is performed using the calibration in Table A.1.

The results are presented in Figure A.1. The labelling is slightly simplified
here: although many starting values lead to integration failure regions are
still labelled according to logic presented below. The 2-singularity locus is not
calculated for this model. There is no evidence of regions of MPE.
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β δ ν ξ ζ

Agent 1 0 5.4× 10−7 1.5 760

Agent 2
1

10,000 1
100 5.4× 10−7 1.5 760

Table A.1
Test asymmetric parameter values

6

- w2 (0)

w1 (0)

linear
MPE

integration
failure
(poorly

conditioned)

integration
failure Wi (z) > 0

truly non-
invertible

cornered
paths

integration
failure
(poorly

conditioned)

Wi (z) > 0
(poorly

conditioned)

0

ξ

−ξ

0

}

Fig. A.1. Outcome as a function of 100×100 initial conditions (asymmetric players)

The multiple symmetric equilibria of Figure 3 may be regarded as a limit of
the results in Figure A.1 as δ2 → 0. To approximate this, a series of δ2 =
{

1
1000

, 1
10000

, 1
100000

, 1
1000000

}

has been explored. As expected, these calibrations

increasingly resemble Figure 3. The poorly conditioned zone setting Wi (z) >
0 is replaced by a well conditioned one; the region of failed integration in
the north-west disappears and that below it shrinks, its northern boundary
becoming a region of quasi-non-invertibility. This sense of continuity allows the
guess that these regions of integration failure might be truly non-invertible,
by analogy to Figure 3.
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B Simplifying the discriminant

This appendix proves Lemma 21. A quadratic expression in r1 as a function
of (p, β, δ, ν, ξ, ζ) is first produced; the expression for the discriminant follows.

As the general quadratic equation 22 has two roots, let w′i = ri, i = 1, 2, so
that ri does not need correction by a λ term to produce a slope. Note also
that

r3 = g =
2ξ − βz

1− p− 1
p

;

where the last equality comes from the definition of g and the generating lines
of equation 31. When g 6= 0, write system 39 (8 at non-invertibility) as

(

r1 +
1

p
r2

)







1

p






= 2 (β + δ)







1
p

p






+ 2ν (z − ζ)

(

1− p− 1
p

)

(2ξ − βz)







1

1






. (B.1)

Divide the second by p 6= 0 to equate their RHS for

(β + δ) = ν (z − ζ)

(

1− p− 1
p

)

(2ξ − βz)
;

as p 6= 1. When z 6= 2ξ
β
,

z =
2ξ (β + δ) +

(

1− p− 1
p

)

νζ

β (β + δ) +
(

1− p− 1
p

)

ν
.

Violating the assumed z 6= 2ξ
β

causes g = 0 and rank (A (σ)) = 0, which
violates Theorem 13’s first condition. Substituting the expression for z into
equation B.1 produces

r2 = 2 (β + δ) (1 + p)− pr1. (B.2)

Differentiate system 8 at non-invertibility and premultiply by
[

c1 c2

]

=
[

1 −1
p

]

to produce

[

g′ − 1
p

1
2
r2

1
2
r1 − 1

p
g′
]







r1

r2






= (β + δ)

(

r1 −
1

p
r2

)

+ 2ν

(

1− 1

p

)

.

As g′ = 1
2
(r1 + r2)− β this simplifies to

1
2
r2
1 − 1

p
1
2
r2
2 +

(

1− 1
p

)

r1r2

= (2β + δ) r1 − 1
p
(2β + δ) r2 + 2ν

(

1− 1
p

)

. (B.3)
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Substitute equation B.2 into equation B.3 for

0= r2
1 +

4

3

[

(β + δ) (1 + p)
(

2− 1
p

)

− (2β + δ)
]

(1− p)
r1

4

3

[

(β + δ)
(

1
p
+ 1

)

(2β + δ)− (β + δ)2
(

1
p
+ 2 + p

)

− ν
(

1− 1
p

)]

(1− p)
;

whose discriminant is

16

9p2(p− 1)2

{

[β + δ]2 p4 −
[

β2 + 3ν + βδ
]

p3

−
[

2βδ + δ2 − 6ν
]

p2 −
[

β2 + 3ν + βδ
]

p+ [β + δ]2
}

.

When p 6= 1, a positive discriminant therefore requires that

[β + δ]2 p4 − [β2 + 3ν + βδ] p3 − [2 β δ + δ2 − 6 ν] p2

− [β2 + 3ν +βδ] p+ [β + δ]2 > 0.
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