
Additive externality games

Colin Rowat

Department of Economics

University of Birmingham

c.rowat@bham.ac.uk

November 22, 2001

22 November 2000 version submitted in partial fulfillment of the
requirements of the PhD in Economics at the University of Cambridge.



ii



Contents

1 Introduction 1

1.1 Greenhouse gas emissions as a non-cooperative problem . . . 1

1.2 Existing approaches and literature . . . . . . . . . . . . . . . 6

1.2.1 Social planners & cooperative solutions . . . . . . . . 6

1.2.2 One shot cartel games . . . . . . . . . . . . . . . . . . 6

1.2.3 Private provision of a public good . . . . . . . . . . . 7

1.2.4 Time series analysis . . . . . . . . . . . . . . . . . . . 7

1.2.5 Optimal growth: RICE/DICE . . . . . . . . . . . . . 8

1.2.6 Scenario writing . . . . . . . . . . . . . . . . . . . . . 8

1.2.7 Bargaining models . . . . . . . . . . . . . . . . . . . . 9

1.2.8 Coalitional models . . . . . . . . . . . . . . . . . . . . 9

1.2.9 Menu auction and common agency . . . . . . . . . . . 9

1.3 Current approach and results . . . . . . . . . . . . . . . . . . 10

1.3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 The differential game models . . . . . . . . . . . . . . 10

Introduction to differential games . . . . . . . . . . . . 10

Structure and results . . . . . . . . . . . . . . . . . . . 13

1.3.3 The functional Nash equilibrium model . . . . . . . . 14

Introduction to functional Nash equilibria . . . . . . . 14

Structure and results . . . . . . . . . . . . . . . . . . . 15

2 Two symmetric agents, symmetric play 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 A linear-quadratic model . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Some reference non-game payoffs . . . . . . . . . . . . 20

The glut point . . . . . . . . . . . . . . . . . . . . . . 20

The first best . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Playing the game . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 The differential equation . . . . . . . . . . . . . . . . . 22

Corner solutions . . . . . . . . . . . . . . . . . . . . . 23

Interior solutions . . . . . . . . . . . . . . . . . . . . . 24

Solutions to equation 2.7 . . . . . . . . . . . . . . . . 26

2.2.4 Defining candidate solution strategies . . . . . . . . . 27

iii



iv Contents

2.2.5 Refining the candidate strategy set . . . . . . . . . . . 28

Glut point and corner deviations: x̂a, x̂6, x0 and x̂3 . . 29

MPE strategies: x̂b and x̂3 (0) > 0 . . . . . . . . . . . 30

2.2.6 Unique MPE strategies? . . . . . . . . . . . . . . . . . 31

Perfectly patient agents (δ = 0) . . . . . . . . . . . . . 32

No environmental decay (β = 0) . . . . . . . . . . . . 34

Climate insensitive (ν = 0) . . . . . . . . . . . . . . . 34

Equilibria when assumption A1 fails . . . . . . . . . . 34

2.2.7 Does the world have a unique equilibrium? . . . . . . 35

2.3 A nonlinear model: finite atmospheric capacity . . . . . . . . 37

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

A Transversality conditions 43

B No production glut 47

C The asymmetric corner candidate 49

C.1 Symmetric agents . . . . . . . . . . . . . . . . . . . . . . . . . 49

C.2 Asymmetric agents . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Two symmetric agents and asymmetric play 53

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Asymmetric play in the linear-quadratic model . . . . . . . . 54

3.2.1 Both agents interior . . . . . . . . . . . . . . . . . . . 55

3.2.2 One agent interior, the other cornered . . . . . . . . . 56

3.2.3 Both agents cornered . . . . . . . . . . . . . . . . . . . 57

3.3 Conditions for MPE . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 Sufficient conditions to disqualify candidate strategies 60

3.3.2 Necessary and sufficient conditions for MPE . . . . . . 61

3.4 Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.2 Singularities in system 3.6 . . . . . . . . . . . . . . . . 65

The non-invertibility and spanning conditions . . . . . 65

The roots condition . . . . . . . . . . . . . . . . . . . 67

The 2-singularity locus . . . . . . . . . . . . . . . . . . 70

3.4.3 Singularities in system 3.9 . . . . . . . . . . . . . . . . 71

3.5 Coding and execution . . . . . . . . . . . . . . . . . . . . . . 72

3.5.1 Solution method . . . . . . . . . . . . . . . . . . . . . 72

3.5.2 Initial conditions . . . . . . . . . . . . . . . . . . . . . 72

3.5.3 Testing paths . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.4 Conditioning . . . . . . . . . . . . . . . . . . . . . . . 78

3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.6.1 Multiple symmetric equilibria . . . . . . . . . . . . . . 79

Grid of initial conditions . . . . . . . . . . . . . . . . . 79



Contents v

One dimensional MPE? . . . . . . . . . . . . . . . . . 81
3.6.2 Unique symmetric equilibrium . . . . . . . . . . . . . 83

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

D Simplifying the discriminant 87

4 Two asymmetric agents 91
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 The linear-quadratic model with asymmetric agents . . . . . 91

4.2.1 Both agents interior . . . . . . . . . . . . . . . . . . . 92
4.2.2 One agent interior, the other cornered . . . . . . . . . 92
4.2.3 Both agents cornered . . . . . . . . . . . . . . . . . . . 93

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Linear strategies . . . . . . . . . . . . . . . . . . . . . 94

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Transfer functions: non-cooperative cooperation 97
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2 Functional Nash equilibria . . . . . . . . . . . . . . . . . . . . 99
5.3 FNE without transfers . . . . . . . . . . . . . . . . . . . . . . 100

5.3.1 Non-existence: payoffs linear in control . . . . . . . . . 100
5.3.2 Existence: payoffs quadratic in control . . . . . . . . . 102

Second order conditions . . . . . . . . . . . . . . . . . 103
Linear solutions . . . . . . . . . . . . . . . . . . . . . . 104
Symmetric agents and play . . . . . . . . . . . . . . . 106
Symmetric agents and asymmetric play . . . . . . . . 108

5.4 The Pareto frontier . . . . . . . . . . . . . . . . . . . . . . . . 113
5.4.1 Comparison with the game . . . . . . . . . . . . . . . 115

5.5 FNE with transfers . . . . . . . . . . . . . . . . . . . . . . . . 115
5.5.1 Implementing the symmetric first best . . . . . . . . . 116
5.5.2 FNE in the three stage game . . . . . . . . . . . . . . 117

Linear emissions and quadratic transfers . . . . . . . . 117
Linear emissions but general transfers . . . . . . . . . 123
The linear-quadratic FNE in the broader functional

space . . . . . . . . . . . . . . . . . . . . . . 124
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6 Conclusions 127

Bibliography 131



vi Contents



Acknowledgements

Acknowledging the contributors to this PhD raises a Soviet fear in my mind:
full accounting for inputs may show my own contribution to be negative.
Stingy thoughts, though, do nothing to repay the myriad kindnesses that
have helped shape this thesis.

James Mirrlees must receive first thanks. In both quantity and quality,
his supervision has been both a great gift to me and a testimony to his dedi-
cation as a teacher. The company of Timo Goschl, Bruce Weisse, Masanaga
Kumakura and Mike Biggs has also been appreciated over these past years.
Per Christian Moan and Nasser Zakariya incarnated for me the tenth - and
only male - muse, that of mathematics.

Stephen Wright and Bob Rowthorn patiently began my training as an
economist, Stephen Siklos, Bob Evans and Andrew Harvey my training as
a teacher. Jayasri Dutta and Herakles Polemarchakis treated me as a col-
league. Chiaki Hara taught me economics over lunch while pretending that I
was helping him with his papers. Robin Mason introduced me to the world
of non-linear differential games and Chris Harris provided Delphic utter-
ances and encouragement in times of need. Pauls Seabright and Ryan, Peter
Tinsley and Richard Steinberg have all been friends. The contributions of
Luca Anderlini, Jean Pierre Vidal, Shunichi Tsutsui and Ngo Van Long and
Hamish Low improved Chapters 2 and 3. Examiners David Newbery and
Gerhard Sorger provided valued feedback throughout. The friendship and
support of Marika Asimakopulos and Hitoshi Hayami have been as unex-
pected as they have been appreciated. Brian Holley’s constant and consum-
mate professionalism, and his perverse interest in answering odd questions
late on a Friday afternoon, have been a pleasure. Shah Datardina of the
Numerical Algorithms Group and John Leis, author of LATEX-CAD, have
been helpful over the years. Ken Judd’s airlift of articles rivalled Berlin’s.

Less directly but no less importantly, my father’s unflagging support over
the decades has been extraordinary. My adopted families, Liz and John, and
Fionnuala, Andrew - and now Aoife - have helped make Cambridge home.

Finally, a perverse thanks to the members of the Campaign Against
Sanctions on Iraq, and Seb Wills in particular, for helping reduce, if only
relatively, my interest in this PhD.

vii



viii Contents



Chapter 1

Introduction

1.1 Greenhouse gas emissions as a non-cooperative
problem

The belief that human activity influences global climate has received con-
siderable attention in recent decades. One channel of influence to be partic-
ularly examined is that involving the atmosphere’s composition. The prin-
cipal reasons for this interest are based on the following observations. First,
gases are selectively permeable, allowing certain wavelengths of radiation to
pass, while trapping others. Thus, altering the composition of a gas exposed
to radiation may alter its energy retention properties. It is also known that
carbon dioxide is a byproduct of the combustion of fossil fuels, and that,
accordingly, atmospheric carbon dioxide levels have risen substantially from
288 ppmv in 1860 to some 368 ppmv today.1 Furthermore, carbon dioxide
is a so-called ‘greenhouse gas’, allowing passage of solar radiation but not
heat.

These observations are neatly illustrated by the historical record, which
shows a high degree of correlation between carbon dioxide concentrations
and temperature. Figure 1.1 contains two 420,000 year data series, both
reconstructed from ice samples drawn from the Vostok research station in
the Antarctic (q.v. [JLP+87], [JBB+93], [JWM+96] and [PRB+99]). The
first, plotted in thick lines, reconstructs atmospheric carbon dioxide con-
centrations from air samples frozen into the ice. The second, in thin lines,
reconstructs a temperature series on the basis of the ice core’s deuterium
content. While both series are influenced by missing variables reflecting the
incidence of solar radiation, graphs of this sort do summarise the perception
that atmospheric carbon dioxide and temperature have been historically
related.

1“Current Greenhouse Gas Concentrations”, Carbon Dioxide Information Analysis
Center, US Department of Energy. August 2000. The unit of measurement used here
is ‘parts per million by volume’.

1
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Figure 1.1: Temperature and atmospheric CO2 against years before present

The possibility that anthropogenic greenhouse gas emissions may be in-
fluencing global climate has generated both academic and political efforts
in global commons management. Perhaps the most visible manifestation of
the political branch of these efforts is the Kyoto Protocol process, whereby
nations are attempting to negotiate legally binding greenhouse gas emissions
limits and accounting techniques. It is unclear as yet whether this attempt
to exploit gains to international cooperation in the setting of greenhouse gas
emissions will succeed. At root, Kyoto’s social planner may be impotent: it
appears to grant itself no powers of enforcement.

Under the Kyoto process, a number of industrialised countries have com-
mitted to meet emissions targets, expressed as a percentage of their 1990
emissions levels, by 2008 - 2012. Emissions targets are denominated in CO2

equivalents, a measure that expresses the relative ability of greenhouse gases
to retain heat in the atmosphere. The first column of Table 1.1 displays the
1990 greenhouse gas emissions (in gigagrams of CO2 equivalent) of the com-
mitting countries;2 the second column displays their 1997 emissions, the
most recent data required of them [Sub99, Tables A.1, A.2]; note that not
all countries have submitted this as yet, although required to do so by 1999.
The third column indicates their emissions targets, as a percentage of their
1990 emissions.3

2Some Central and Eastern European countries use other years as their baselines.
3The European Union countries are collectively required to reduce their emissions to
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Table 1.1: Greenhouse gas emissions and Kyoto Protocol commitments

Country 1990 emissions 1997 emissions Kyoto target

Australia 474,529 n.a. 108

Austria 60,427 64,473 EU

Belgium 137,219 n.a. EU

Bulgaria 131,436 78,609 92

Canada 555,450 663,580 94

Czech Republic 187,556 153,593 92

Denmark 70,734 82,659 EU

Estonia 29,402 31,090 92

[European Community] n.a. n.a. 92

Finland 72,786 76,684 EU

France 501,713 490,298 EU

Germany 1,176,328 1,012,679 EU

Greece 105,235 n.a. EU

Hungary 98,537 n.a. 94

Iceland 2,577 n.a. 110

Ireland 51,701 n.a. EU

Italy 508,813 n.a. EU

Japan 1,129,359 1,280,365 94

Latvia 24,843 1,643 92

Liechtenstein 238 n.a. 92

Lithuania 42,700 n.a. 92

Luxembourg 13,153 n.a. EU

Monaco 111 147 92

Netherlands 215,552 n.a. EU

New Zealand 51,628 59,153 100

Norway 42,284 39,276 101

Poland 529,540 385,699 94

Portugal 67,290 n.a. EU

Romania 261,954 n.a. 92

Russian Federation 2,648,062 n.a. 100

Slovakia 68,239 n.a. 92

Slovenia 16,919 n.a. 92

Spain 301,431 n.a. EU

Sweden 35,099 40,656 EU

Switzerland 49,389 46,890 92

Ukraine 867,113 397,664 100

United Kingdom 748,772 674,219 EU

92% of their 1990 emissions, in an arrangement known as a bubble. The emissions restric-
tions agreed are contained in Annex B of the Protocol.
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Country 1990 emissions 1997 emissions Kyoto target

USA 4,841,370 5,866,128 93

At first glance, Table 1.1 is not unreassuring. Total emissions for those
countries reporting in both 1990 and 1997 are 11,105,299 and 11,445,505
Gg, respectively, a 3% increase. As the Kyoto Protocol was only developed
in March 1997, this slight increase may not be cause for concern. A second
look at the table is more worrying if one notices the difference between
the transition economies and those economies whose development in the
1990s has been less unusual. Summing the emissions of the non-transition
economies reporting in both 1990 and 1997 yields 9,335,450 and 10,397,207,
an 11% increase. To the extent that these economies may be exhibiting more
representative development, it is possible that meeting the Kyoto targets will
not be a trivial task.4

This concern generalises: it may be that the current arrangement of
international institutions hinder holding nations to any emissions targets
other than those that nations would meet non-cooperatively. The behaviour
of the US Senate suggests some of the difficulties faced: it has affirmed that
it will not support any US emissions targets - including those negotiated
under the Kyoto mechanism - unless countries like China and India, not
among the countries required to undertake emissions reductions, are also
bound to reductions.5 Recent European experience may also indicate the
difficulties of reducing fossil fuel use through fuel taxes: in the face of prices
regarded by consumers as high, governments come under popular pressure
to reduce these taxes, which are responsible for most of the consumers’ price.

The above concerns suggest the possibility that actual greenhouse gas
emissions may resemble non-cooperative rather than cooperative outcomes.
This possibility is sufficient to merit exploration of how non-cooperation
emissions might be analysed. This thesis explores that general question
by asking two specific questions. Both questions are addressed within the
context of what is here called an additive externality game: a game in which
an externality is generated as an additive function of agents’ behaviour.

4Recent scientific evidence suggests that this may be easier than previously expected.
A recent report argues that “rapid warming in recent decades has been driven mainly by
non-CO2 greenhouse gases” and that the “growth rate of non-CO2 greenhouse gases has
declined in the past decade” [HSR+00]. As non-CO2 gases are less intrinsic to modern
industrial processes, and apparently disproportionately significant, their reduction may
be reasonably inexpensive. While these gases may offer the least expensive opportunities
for reductions, it is plausible to imagine that eventually attention will return to carbon
dioxide.

5q.v. S.Res.98, “Expressing the sense of the Senate regarding the conditions for the
United States becoming a signatory to any international agreement on greenhouse gas
emissions under the United Nations”, 25 July 1997.
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The first question asked is how emissions might evolve when nations are
able to interact only via their emissions. This question is pursued by anal-
ysis of a differential game, a dynamic game in continuous time. Oligopolies
and commons problems have been modelled as differential games; the tech-
niques are equally applicable to analysis of tariff wars and the interactions of
national monetary policies. They are used here to explore a simple dynamic
commons problem in which agents’ controls are bounded and non-linear.

The treatment given to non-linear strategies in differential games in the
early 1990s has been felt by some to be unsatisfactory. In particular, the
state space over which strategies have been required to hold has typically
been subject to endogenous bounds. This thesis reworks that literature with-
out this bound and then presents extended models. The general conclusion
is that equilibria with non-linear strategies do not seem to be robust.

This question occupies the bulk of the thesis.
The second question asked is how emissions might evolve when nations

are also able to interact by offering each other voluntary transfers. The
debate over the ability to ‘trade’ emissions under the Kyoto process may
be interpreted as a debate over the ability to offer transfers. The practical
motivation for such a question is thus obvious. It coincides with a theoreti-
cal interest in whether ‘non-cooperative cooperation’ can improve outcomes
in an externalities problem. This approach, of expanding agents’ strategy
spaces, contrasts with the usual approaches to externality problems, such
as Pigovian taxes and Coasian property rights, by not relying on a social
planner.

As adding the second dimension to each agent’s strategy space increases
the problem’s complexity, it is modelled as a one-shot game. While the
first part of the thesis looks for subgame perfect Nash equilibria, the Nash
concept must be modified when agents take action in an attempt to influence
each other. This part therefore uses a functional Nash equilibrium.

The finding in this section of the thesis is that self-enforcing transfers
can be Pareto improving, even if they are symmetric, thereby netting out in
equilibrium. It is unclear whether this is surprising or expected. In a single
agent control problem, an additional control is certainly expected to not
worsen payoffs. In a game, though, an additional control may also reduce
the ability of agents to commit themselves, possibly causing the outcome to
further deviate from the Pareto optimal.

Although the transfers are required to be self-enforcing, this approach
does introduce cooperative elements, in violation of the spirit of this thesis:
notional stages are introduced, implying a commitment to a particular game
form; it must also be assumed that a transfer function offered will be adhered
to when the time comes to make payments.

The conceptual problems of how nations might behave cooperatively in
the international realm might be overcome if nations are allowed to enact
and enforce national laws that bind their behaviour. This possibility makes
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this thesis’ commitment to non-cooperative interaction seem rather rigid.

The questions explored here have, of course, been explored before. This
introductory chapter therefore discusses various approaches to them and
related problems that the existing literature has pursued. It then introduces
at greater length the present approach and results. These fall far short of
offering a sophisticated understanding of greenhouse gas emissions. That
would require a model of heterogenous agents with evolving characteristics,
uncertainty of preferences and a stochastic evolution of the state of nature.
Hopefully, though, some more foundation stones have been laid that might
assist in future analyses of this and related questions.

1.2 Existing approaches and literature

As any modelling exercise, attempting to formulate greenhouse gas emissions
scenarios is an exercise in the judicious choice of lies. Before introducing the
set of lies used in this thesis, some of the existing ones are presented. Some of
these are more applicable to this thesis’ first question (no cooperation) while
others are more applicable to the second (non-cooperative cooperation).

1.2.1 Social planners & cooperative solutions

A standard approach to commons problems has a social planner calculate
and implement a cooperative outcome based on some relative weightings of
countries’ importances. One drawback of this approach in the context of
greenhouse gas emissions is that it is not clear that there is a social planner
capable of implementing an international environmental agreement.

1.2.2 One shot cartel games

There is a large literature on one-shot cartel games (q.v. [Car97]). This liter-
ature typically examines n identical agents playing a game with externalities.
Agents choose between joining a cartel or remaining part of a competitive
fringe. Those joining the cartel maximise its joint profits against the non-
cartel members’ actions; those on the competitive fringe individually profit
maximise.

This literature then attempts to identify the stable cartel structures.
Typically, two profit functions are plotted as a function of the number of
cartel members: cartel membership profits and fringe membership profits.
A cartel is stable if no cartel member prefers to join the fringe (the gains
from individually profit maximising being offset by the reduction in price
due to the loss of cartel power) and vice versa. Different techniques for
enlarging the stable cartel may then be explored (e.g. playing the one-shot
game repeatedly).



1.2. Existing approaches and literature 7

An obvious drawback of this approach to problems involving persistent
goods or bads is that it does not model state variables. Nevertheless, Carraro
and Siniscalco, two contributors to this literature, believe that cartel games
are of interest. They argue that, in the case of GHG emissions, “the level of
emissions, however, can hardly be conceived as a trigger variable which can
be increased strategically in response to other countries’ defection” [CS93,
p. 312]. Dockner [Doc92] has provided a more rigourous link between the
steady state closed-loop equilibria of dynamic models and the ‘conjectural
variations’ equilibria of one-shot static models. A computational example
of this literature is found in Babiker [Bab97].

1.2.3 Private provision of a public good

In the private provision of public goods (or bads) literature, agents typically
take turns making contributions to an exogenously defined ‘project’ which
provides a public payoff stream upon completion (q.v. Admati and Perry
[AP91] for a two agent alternating order game with complete information,
Gradstein [Gra92] for one with incomplete information). Variants on this
theme have payoffs accruing while the project is still under construction
(q.v. Marx and Matthews [MM97]) or require a single agent to assume a
project’s whole burden (q.v. Bilodeau and Slivinski [BS96]).

Solutions are usually derived by backward induction. After some se-
quence of contributions to a project, an impatient agent will prefer to pay
to finish the project now rather than not paying but wait for the next agent
to do so at the next point in (discrete) time. Identifying the amount that an
impatient agent will pay now to finish the project then allows consideration
of the sub-problem which has a project of the original size less what the
impatient agent would pay now. Backward induction then continues.

The exogenous definition of projects is a weakness in the non-cooperative
context. Their endogenisation requires some mechanism for proposing and
accepting or rejecting projects (e.g. agents take turns proposing projects
until all accept one and its variants, such as first rejector proposes; q.v.
[AP91]; Chatterjee et al. [CDRS93] for a fixed order with n agents or Okada
[Oka96] for a random order). As adherence to any such mechanism requires
cooperation, this approach compromises a non-cooperative approach.6

1.2.4 Time series analysis

A very different attempt to generate emissions scenarios is to take historical
data, fit a time series model to them and then predict out of sample. One
drawback of this approach is that the distance out of sample that one is
interested in may be quite long relative to the sample. Furthermore, there is

6For an illustration of the problem of agreeing to rules, see the chess game story in
Marquez [Gar84].
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the possibility of a structural break: countries have not historically regarded
greenhouse gas emissions as strategic. If they do in the future then a model
calibrated on past behaviour may not be useful.

1.2.5 Optimal growth: RICE/DICE

Nordhaus and Yang’s Regional Integrated Model of Climate and the Econ-
omy (RICE) model is the computational benchmark in the climate games
literature [NY96]. It turns the intertemporal optimisation problem of Nord-
haus’ earlier DICE (replace “Regional” with “Dynamic”) into a multi-agent
game.

The original DICE is a discrete time, finite horizon Ramsey optimal
growth problem, augmented by environmental components. These include
a new choice variable (rate of emissions reduction) and equations for the
environment as well as its interaction with the economy. RICE extends
DICE by breaking the world into five agents.

Nordhaus and Yang calculate three solutions to their RICE model. The
first has agents optimising heedless of the externalities. The second is a
social planner’s optimum. The third is a Nash equilibrium in open loop
strategies (as noted by Radner [Rad98, p. 10]). Thus agents choose an
optimal timepath of controls, assuming others’ to be fixed. Nordhaus and
Yang find a unique fixed point by inducting backwards over a finite horizon.

While RICE’s spirit - a non-cooperative dynamic game - is shared with
the present approach, it also differs in a number of respects. RICE has stayed
closer to the motivating question of greenhouse gas emissions. Its model of
the economy, the environment and their interactions is richer than that in
this thesis. In return, though, it works with discrete time, a finite horizon
and open loop strategies. In contrast, the first section of this thesis works
with continuous time, an infinite horizon model and closed loop strategies.

1.2.6 Scenario writing

Given the complexity of the environment-economy system some analysts
have developed scenarios on the basis of qualitative assessments. Key vari-
ables are identified and their timepaths fixed by various assumptions. Each
set of assumptions is then used to seed a quantitative model, generating
scenarios.

The UN Intergovernmental Panel on Climate Change (IPCC) has used
this approach. Their recent Special Report on Emissions Scenarios starts
with four stories (deliberately omitting the possibility of disasters), from
which 40 scenarios are generated [Int00]. This report does not assign prob-
abilities to the scenarios.
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1.2.7 Bargaining models

Rubinstein bargaining games and their generalisations might help explore
‘non-cooperative cooperation’. Burbidge et al. identify some weaknesses
with this approach:

But any extensive form one writes down as a description of the
protocol of dynamic negotiation is bound to be somewhat ar-
bitrary; and, as is well-known, equilibria in dynamic games are
often extremely sensitive to the precise protocols. [BDMS97,
p.953]

A second difficulty was already encountered in the context of private
provision games: it is a strong assumption to believe that agents playing non-
cooperatively might nevertheless agree to abide by an arbitrary extensive
form.

1.2.8 Coalitional models

Another approach to ‘non-cooperative cooperation’ is offered by the litera-
ture on coalitions. This literature, though, has many of its own difficulties.
First, many of the models assume transferable utility, avoiding the problem
of ordinal utility. Second, the threat point that agent i can offer is usu-
ally some version of the singleton {i} rather than an alternative coalition.
Consideration of possible alternative coalitions is, as usual, more compli-
cated but more sensible. A third potentially unsatisfactory feature of the
coalitional approach is the method used to share the surplus available to a
coalition. This are usually divided according to some co-operative rule (e.g.
Shapley or CS-value, q.v. [HK83]); sometimes agents are allowed to make
irrevocable commitments to the resulting coalitions and the sharing rules
(q.v. [BDMS97]). One wonders what new technology has allowed this to
happen in an otherwise non-cooperative environment.7

Bloch [Blo00] presents a good survey of the coalitional literature.

1.2.9 Menu auction and common agency

Another approach to co-operation and collusion may be found in the menu
auction and common agency literatures. These were pioneered by two 1986
papers by Bernheim and Whinston (q.v. [BW86b] and [BW86a]). In these,
multiple principals provide reward schedules for a single agent. The agent
reacts accordingly so that the equilibrium concept resembles that of the
Stackelberg leader-follower model.

7A related question is that of how the coalition then plays with non-coalition members.
Both questions, that of surplus division and that of the coalitions’ play, are questions about
the objective function of the coalition.
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This approach does not seem appropriate in this thesis as the context
makes exogenous third party agents difficult to justify. Trying to endogenise
the agent might be a promising research programme as there does not yet
seem to be a well developed story of how social planners arise.

1.3 Current approach and results

This section presents the assumptions and techniques used in this thesis.
Results are also introduced.

1.3.1 Assumptions

Throughout this thesis, agents are regarded as rational in the standard game
theoretic sense. This clearly implies stronger assumptions about their abil-
ities than would, for example, models of boundedly rational agents. As the
agents here represent governments, though, this may be a less implausible
assumption than it would be were they, for example, individuals.

Relatedly, the intertemporal models developed here assume agents to
optimise over an infinite horizon. This assumption again makes computa-
tional demands on the agents which would be harder to sustain were they
not national governments.

Another assumption made throughout is that the agents are govern-
ments. To an economist, this may seem quite natural. At the same time,
there is a common popular perception that the nation state has declined in
influence relative to large corporations. Should not corporate agency, then,
be modelled? The present assumption that governments are agents says
nothing about the aggregation of preferences within a country. It merely
contends that a nation’s action can be taken to reflect an aggregation of
some sort, influenced either passively or actively by the government. It
makes no assumptions on the weights assigned to the interests aggregated.

1.3.2 The differential game models

This thesis’ first question has been modelled with a differential game princi-
pally because that seemed to stay closest to a non-cooperative motivation.
Private provision approaches were initially pursued but the problem of de-
termining which project agents would seek to implement led, in the end, to
their abandonment.

Introduction to differential games

A differential game is a multi-agent control problem in continuous time.
Each agent typically controls a single real-valued control variable, influencing
a vector of real-valued state variables. If controls are bounded, as here, the
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most common bound is their restriction to the non-negative reals. The term
differential is used as the state variables’ equations of motion are differential
equations.

Much of the existing literature works with a scalar state variable (cf.
Mason [Mas] and the references therein for exceptions). In some cases there
is only one state variable of interest but this simplification also facilitates
analysis by reducing the Hamilton-Jacobi-Bellman equations from partial to
ordinary differential equations.

A continuous time formulation brings advantages and disadvantages.
There are at least two advantages in this context. First, it is a more plausible
formulation for a problem in real time. Second, it prevents implicit peri-
ods of commitment being built into the model, consistent with this thesis’
commitment to non-cooperative models.

A feature of continuous time models frequently regarded as disadvanta-
geous is the possible non-uniqueness of the state variable’s timepath. This
is typically addressed by requiring strategies to be Lipschitz continuous but
there are also weaker ways of ensuring uniqueness.8 While the plausibility
of continuity may be defended on the grounds that the control variable may
be ‘sticky’ it may be preferable, were this the case, to model its ‘stickiness’
directly.

The usual solution concept in a differential game is the Nash equilib-
rium. In dynamic games a refinement of the Nash, the Markov perfect equi-
librium (MPE), requires that solutions be functions of the state variables
alone (hence Markov) and that they be Nash equilibria of every subgame
(hence perfect).9 This restriction then allows each agent’s problem to be
treated as an optimal control problem against fixed play by the others.

The Markov approach therefore generally omits a history of play. In the
optimal control problem, this is irrelevant: there is no history of strategic
interaction. In the game, the omission may have consequences. The in-
finitely repeated prisoners’ dilemma is the standard example: conditioning
strategies on the null state variable alone causes an infinite repetition of the
static game’s Nash equilibrium as deviation cannot be punished. The use
of a state that insufficiently summarises the game’s history may therefore
paint a worst case scenario of cooperation.

Nevertheless, MPE are still perfect equilibria in broader classes of strate-

8There are papers in the differential game literature, such as Dockner and Sorger’s
[DS96] fishing game, that find discontinuous Markov strategies. Their approach, less
mechanical than that presented here, is made possible by their choice of functional form.
Sorger [Sor98] generalises their results beyond two players. Dutta and Sundaram [DS93],
in a variant on Levhari and Mirman’s [LM80] discrete-time classic, avoid tragedy by
observing that punishments triggered by the state variable may proxy those triggerred
by play; their paper proves that strategy continuity and strategy monotonicity are both
sufficient conditions for a tragedy. These papers, though, are the exception.

9The literature often refers to ‘feedback’, ‘memoryless closed loop’ and ‘Markov’ strate-
gies interchangeably.
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gies as long as the state contains all payoff relevant variables.10 For attempts
to derive endogenously the payoff relevant state variables see Maskin and
Tirole [MT97]. For an example (although not in Markov strategies) of an
attempt to bridge the gap between the small state used by practitioners and
theorists’ larger sufficient state see Kubler and Schmedders [KS99].

Together, the usual continuity requirement on strategies and the removal
of past play information from the state variable impede play-dependent trig-
ger strategies. These assumptions may therefore be responsible for some of
this literature’s ‘tragedy’ results, in which stocks are overexploited relative
to the first best.

A differential game is linear-quadratic (LQG) if its equations of motion
are linear in the controls and the states and if the payoff or loss functions are
quadratic in the controls and states. LQG often yield closed form MPEs in
strategies that depend linearly on the state; their derivation involves solv-
ing a system of coupled algebraic Riccati equations (CARE) (q.v. Başar
and Olsder [BO99]). Both Başar and Olsder [BO99, p.324] and Lockwood
[Loc96] present uniqueness results for linear strategies. To exploit this ap-
pealing feature of LQG, problems are often modelled as LQG, a decision
defended by the argument that the LQG may be thought of as a local Tay-
lor approximation to the actual game (q.v. Fudenberg and Tirole [FT91,
p.523]).

Within the economics literature, differential game theory has been used
to analyse common resource management problems (q.v. Dockner and Long
[DL93] for a LQG greenhouse gas example or Dockner and Sorger [DS96]
for a non-LQG fisheries example ) and oligopolistic pricing problems (q.v.
Tsutsui and Mino [TM90] for a LQG duopoly example). Common to these
analyses are the assumptions that agents (usually two for convenience’s sake)
are identical, that they play identically and that the state is a scalar. The
second assumption follows naturally from the first; with the third, analysis
is reduced to the solution of a single ordinary differential equation and a
transversality condition. Mason’s acid rain game [Mas] is again exceptional
as its agents may be asymmetric and it possesses a state vector.

The four examples cited in the preceding paragraph are unusual in their
interest in non-linear strategies; by contrast, the bulk of the differential
games literature has concentrated on linear strategies. The differential
games here also consider the more general strategy space: although a restric-
tion to linear strategies simplifies analysis, it is not clear why sophisticated
agents would a priori restrict themselves in this manner.11

10A variable is payoff relevant if it is an argument in the instantaneous payoff function.
The claim follows: as Markov strategies already condition on everything payoff relevant,
there is no unilateral incentive to condition on anything more.

11A posterior rationale for restriction might exist if multiple equilibria, including at
least one in linear strategies, are found and if a linear strategy is Pareto superior to the
others. When agents are patient, Dockner and Long conclude that the opposite is true:
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The solution to differential games with non-linear strategies no longer
centres on solving the CARE system: Dockner and Sorger solve their ordi-
nary differential equation without further differentiation while Tsutsui and
Mino solve theirs by differentiating the Bellman equation; the equation that
they thus derive they call an auxiliary equation. Dockner and Long follow
Tsutsui and Mino, altering the payoff function to transform the duopoly
problem into a greenhouse gas one. Mason addresses his more complicated
system of partial differential equations by restricting analysis to behaviour
in the steady state; he uses numerical methods to solve the resulting system
of equations. All four papers, as well as Sorger’s generalisation of his work
with Dockner [Sor98], find a continuum of equilibria.12

Structure and results

Chapters 2, 3 and 4 develop the thesis’ first question. The basic differential
game is set out in Chapter 2: identical and certain agents play a LQG with-
out side payments; they may use non-linear strategies. Chapter 2 therefore
reworks Tsutsui and Mino [TM90] and Dockner and Long [DL93], with two
differences: a correction and a cosmetic change. The correction is signifi-
cant. Tsutsui and Mino’s equilibrium concept only requires strategies to be
optimal against play within an endogenously bounded subset of the state
space. By contrast, the present analyses do not endogenously bound the
state space. This modifies the earlier results: for certain parameter values,
the continuum of non-linear equilibria and single linear equilibrium are still
found. Otherwise only the linear candidate survives, a new result. The cos-
metic change involves a slightly different specification of the payoff functions;
this is cosmetic as they are, both in Tsutsui and Mino and here, quadratic
loss functions.

Chapter 3 extends the model of Chapter 2 by allowing symmetric agents
to play asymmetrically. This is not as intrinsically interesting as a situation
in which asymmetric agents play asymmetrically but its consideration has
two advantages. First, it allows the results derived to be tested against the
benchmarks established in Chapter 2. Second, as the model now involves
solving two non-linear ordinary differential equations, it requires the same
tools as would one in which the agents were asymmetric. The technique
is therefore applicable to the fully asymmetric situation, but slightly more
transparent.

As analytical solutions are not found to the two ordinary differential
equations, numerical analysis is used. This explores both families of similar
neighbouring strategies as well as the isolated strategies felt to be candi-

non-linear paths outperform the linear [DL93, p.24].
12It is somewhat perplexing that Başar and Olsder [BO99, Remark 6.16] claim that the

question of whether there might be non-linear solutions to the LQG remains unresolved.
They may have in mind similar concerns to those presented below.
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dates for supporting equilibria. No new equilibria are found. As the search
seems reasonably exhaustive, it seems quite likely that there are, in fact, no
asymmetric equilibria. Chapter 4 uses this approach to a examine a case of
asymmetric agents. The only equilibrium found is the linear.

The strong suggestion of these chapters is that the non-linear equilib-
ria originally discovered by Tsutsui and Mino are not robust in the linear
quadratic game.

1.3.3 The functional Nash equilibrium model

As above, a desire to remain close to a non-cooperative motivation influenced
model choice when addressing this thesis’ second question. Self-enforcing
transfers seemed more appropriate from this point of view than coalitional
models, with their cooperative sharing rules. The functional Nash equi-
librium concept then followed as transfer strategies violate the premise of
the standard Nash equilibrium, namely that agents optimise assuming the
others’ behaviour to be fixed.

Introduction to functional Nash equilibria

Klemperer and Meyer’s 1989 paper provided a means of analysing equilibria
when agents choose functions [KM89]. Their motivating example was an
oligopoly problem with demand shocks that occur after firms choose their
strategies. Firms therefore select functions to respond flexibly to the un-
certainty. This does not require any sort of commitment technology as the
functions are chosen so that any outcome is ex post optimal.

In Green and Newbery’s study of competition in the British electricity
generation industry the use of functions is even more compelling as British
firms are legally required to submit supply functions the day before gener-
ation [GN92]. A real auctioneer then equates supply and demand. Their
paper follows Klemperer and Meyer’s closely. In Green and Newbery’s pa-
per, though, demand is a function of price and time, while in Klemperer and
Meyer’s it is a function of price and a shock.

Klemperer and Meyer noted that earlier work in functional strategies
had not involved uncertainty, giving rise to at least two problems. The first
of these is the motivational one mentioned above: the flexibility gained by
choosing functions is less sensible in a perfectly predictable environment.
The second problem is that the set of functional equilibria expands consid-
erably without uncertainty.

To explain this second problem, consider two duopolists deciding on their
production levels of a homogeneous good. As the firms have preferences
over both production decisions, almost all points in (q1, q2) space may be
described as the intersection of indifference curves of firms one and two.
There are then two sources of multiplicity. First, given any q∗ = (q1, q2)
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at which indifference curves intersect, the firms can choose supply functions
such that the other’s best response produces an outcome at q∗. Second, as
very few conditions are placed on the supply functions supporting q∗ (slope
at q∗ and possibly properties designed to prevent a second intersection), a
multiplicity of functions will be able to support an equilibrium at any q∗ if
non-linear strategies are permitted.

The introduction of demand uncertainty by Klemperer and Meyer im-
poses more conditions on the supply functions by requiring that optimality
hold for all possible realisations of the uncertainty. Consequently, as the
support of the uncertainty increases, so does the range over which these
conditions must hold. This, in their model, serves to refine the equilibrium
set.

Structure and results

Chapter 5 asks how much improvement is possible with voluntary transfers.
It analyses two games in depth, a benchmark in which transfer functions
are not allowed and an expanded game in which they are. In the first case,
there are two equilibria in linear emissions. In the second, there are again
two equilibria when emissions strategies are restricted to being linear and
transfers quadratic functions. None of the game results allow attainment
of the first best. Furthermore, neither of the games is Pareto superior in
the sense that either of its outcomes are preferred to both of the other. In
both games, the equilibrium strategy supported by the emissions function
that decreases in the state variable is preferred to that supported by the
increasing emissions function.
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Chapter 2

Two symmetric agents,
symmetric play

2.1 Introduction

In this chapter two identical and static agents emit greenhouse gases into
a common atmosphere as a side effect of production, their single control
variable. Only production and the greenhouse gas stock are payoff relevant,
the latter as a wealth effect. Agents’ strategies are (nonlinear) Markov. The
model analysed here is therefore very similar to that of Tsutsui and Mino
[TM90]. This chapter differs from their paper in at least two ways.

The chief difference lies in the domain over which strategies must be
defined, and their performance assessed. Tsutsui and Mino endogenise the
domain as follows. The differential equation that they derive from their
Bellman equation produces an infinite number of solutions, parameterised
by a constant. For each individual solution to the differential equation,
they define a domain such that, within that domain, the solution satisfies
the control and state bounds and forms a well-defined C1 function. These
individual domains, over which behaviour is evaluated, are generally smaller
than <++, their original state space.

This endogenisation both seems unnatural and has serious implications:
for a particular strategy to support a Nash equilibrium it must be that
the agent regards that strategy as yielding a superior payoff to any other
admissible strategy. Payoffs can only be compared, though, if agents are
allowed to consider all possible strategies of play, including those strategies
which would cause the state variable to leave the endogenised domain, while
remaining in <++. By preventing these being considered, the Tsutsui and
Mino approach rules out the sort of conjecture that underlies the Nash
concept.

Nevertheless, this endogenisation seems an important element of the
existing literature’s approach. Tsutsui and Mino write that, “the domain of

17
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the state plays a crucial role in characterising a stationary Markov feedback
equilibrium” [TM90, p.140] while Dockner and Long, following them, stress,
“the local nature of the nonlinear Markov strategies” [DL93, p.23], referring
to the truncation of the rest of the state space.

In contrast, the present thesis works primarily with Z ∈ <++; an ap-
pendix considers a subset of <++. Interestingly, this consideration of the
full domain throughout does not necessarily alter the equilibrium set. Un-
der certain conditions, though, the continuum of [TM90] and [DL93] may
be refined to a singleton, a downward sloping linear MPE strategy. As men-
tioned on page 12, one of the appeals of linear-quadratic models, such as
the present, is that they often do admit such linear solution strategies.1

The second difference between this chapter and the existing literature
is cosmetic. The instantaneous payoff functions of Tsutsui and Mino and
Dockner and Long are

[
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respectively, where Greek letters denote strictly positive constants, xi agent
i’s control variable and z the state variable. The instantaneous payoff func-
tion used here is
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Therefore, the present work models an additive quadratic loss function in
which the static optimal level of the state (ζ here) may be greater than zero.
Dockner and Long assume that the static optimal state is zero.2 Otherwise,
the models are not nested versions of each other: as the first and third
matrices are singular, no transformations of variables cause them to equal
the second (which is only singular if γ = 0 or β = 0). This is not an
important difference as the games are still linear-quadratic, and the solutions
of the differential equations similar in form.

The basic linear-quadratic game is presented and analysed in Section 2.2;
Section 2.3 extends the analysis to a nonlinear equation of motion. Section
2.4 concludes with some unresolved questions. Appendix A presents two

1See Dutta [Dut95] for an introduction to the question of whether Folk Theorem results
might hold in dynamic games.

2Although not complicating analysis, this is not simply a normalisation as the differ-
ential equation of motion will be seen to have a decay term.
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standard conditions for candidate value functions. Appendix B considers
an alternative specification to the initial quadratic utility function. Finally,
Appendix C considers a particular case of asymmetric play.

2.2 A linear-quadratic model

Consider two agents, indexed i = 1, 2. Grant them identical quadratic
instantaneous utility functions3

u (xi, z) = − (xi − ξ)2 − ν (z − ζ)2 ; (2.1)

where xi ∈ <+ are their controls, z ∈ Z = <++ is the state and Greek letters
denote strictly positive constants. The first strict inequality simplifies con-
sideration of activity around the state space’s lower bound. In the context of
the greenhouse gas emissions problem, the xi represent national production
(which incidentally produces emissions in a fixed ratio to output), and the
z represent the consequent atmospheric stock of greenhouse gases.

Instantaneous utility is therefore concave in both control and state. Fur-
thermore, agents have a production glut point (x = ξ) and a climate glut
point (z = ζ).4 The former may be consistent with an aggregated neo-
classical labour supply trade off between work and leisure or an optimal
capacity utilisation ratio. The latter allows agents to have some sense of
optimal climate including, but not necessarily, the lunar climate, ζ = 0.

Agents’ intertemporal objective functions are of the form
∫ ∞

0
e−δtu (xi (t) , z (t)) dt; (2.2)

where δ ∈ <++ is a discount rate and t is time, assumed, for calibration
purposes, to be in years.

The evolution of GHG stocks is described by the linear differential equa-
tion of motion

ż = x1 (t) + x2 (t)− βz (t) s.t. z (0) = z > 0; (2.3)

where β is a constant decay rate; this last component of the equation of
motion is often called the assimilation function. Some specifications of this
function include a constant negative term; that is not done here for simplic-
ity’s sake as it would require an auxiliary condition to prevent ż (0) < 0 when
x1 = x2 = 0. In section 2.3, below, the more realistic β (z) is considered.

3The tools developed here apply as easily to the case in which δ, ν, ξ and ζ differ across
agents.

4Meade’s language of glut is used instead of Ramsey’s of bliss: although marginal utility
with respect to a factor may have reached zero, “people would not necessarily be blissfully
happy; that depends upon many factors other than the economic. But economic advance
would have no further contribution to make to human welfare. Call this position one of
‘product glut’.”[Mea55, p.94]
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The linear equation of motion and quadratic objective function together
define a linear-quadratic game (LQG). If strategies are restricted to linear
functions of the state space, then linear equilibrium strategies may often be
derived from the ensuing Riccati equations. As these are well known (again,
see page 12 for references), the following concentrates on finding equilibria
in non-linear strategies.

2.2.1 Some reference non-game payoffs

The glut point

The payoff to being at the glut point, (z, xi) = (ζ, ξ), forever is zero. While
this is not attainable as a steady state except when βζ = 2ξ, it does impose
a finite upper bound on payoffs. It is therefore necessary that any solution
to this problem have a payoff that is bounded above by zero.

The first best

The steady state of the first best when agents are identical and equally
weighted by the social planner may also be calculated. The first order nec-
essary conditions of the current value Hamiltonian are

m (t) = −ux (xi, z) ;
ṁ (t)− (β + δ)m (t) = 4ν (z − ζ) ;

where m is the current value Lagrangian multiplier and ux is the partial
derivative of u () with respect to its first argument. These imply a system
of differential equations.5 Rather than solving the full timepaths note that,
in the steady state, xi (t) =

β
2 z (t) and m (t) = −4ν z−ζ

β+δ . Combined with the
first order conditions these yield the steady state

(zfb, xfb) =

(

2
(β + δ) ξ + 2νζ

β (β + δ) + 4ν
, β

(β + δ) ξ + 2νζ

β (β + δ) + 4ν

)

. (2.4)

When βζ ≤ 2ξ, this exceeds the climate glut level and falls below the product
glut level. As this is the first best, though, it is optimal by definition and
cannot be considered a ‘tragedy’ result.

As the relationship between β, ξ and ζ encountered in the previous para-
graph recurs throughout the chapter it is formalised as a domain restriction
on β:

5The dynamic programming approach does not give any clearer an expression for the
dynamics. Its differential equation,

w
′ (z) =

(β + δ)w (z) + 4ν (z − ζ)

2ξ − βz + w

(where w (z) is the derivative of the candidate value function, W (z), and subscripts index
agents) has an unwieldy implicit solution.
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A1 βζ ≤ 2ξ.

This assumption is of no analytical importance but simplifies exposition
by limiting it to cases in which the steady state locus, ż (t) = 0, passes below
the glut point, (ζ, ξ). This assumption is maintained for the remainder of
this section; those cases in which it does not hold are considered are then
considered.

2.2.2 Playing the game

Generally, a strategy is a rule for determining xi at any point in time, t, as a
function of t, and the history of the game, {x1 (τ) , x2 (τ) , z (τ) | τ ∈ [0, t]}.
A (stationary) strong Markov strategy is a function of the current state alone.
While the payoff-relevant state space may be very large it is here restricted
to the state space to Z. Therefore a stationary strong Markov strategy is a
mapping, xi : <++ 7→ <+, so that xi is xi (z).

A common concern expressed about work in continuous time is that
differential equations may give rise to non-unique solutions. A strategy pair
(x1, x2) is therefore admissible if it yields a unique, absolutely continuous
solution to equation of motion, 2.3. As the solution to equation 2.3 is

z (t) = e−βt
{

z +

∫ t

0
eβs [x1 (s) + x2 (s)] ds

}

;

this merely requires that the xi (t) be integrable. The requirement of abso-
lute continuity simply requires that it be possible to integrate equation of
motion 2.3, an obvious necessary condition for a solution.

Let Ji (xi|xj , z) be the total payoff received by agent i when playing
strategy xi against strategy xj , j 6= i ∈ {1, 2} and starting at z (0) = z.
Then:

Definition 2.1 An admissible strategy pair (x1, x2) is a Nash equilibrium
if

Ji (xi|xj , z) ≥ Ji (x̂i|xj , z) ∀i 6= j ∈ {1, 2} ;

where x̂i is any other admissible strategy available to agent i.

Definition 2.2 A (strong) Markov Perfect Equilibrium (MPE) is a Nash
equilibrium in (stationary) Markov strategies.

Definition 2.3 Let the value of the game to agent i of the game played by
agents i and j be

Vi (z) = max
xi≥0

Ji (xi|xj , z) .
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Attention is restricted to those solutions in which Vi (·) is almost ev-
erywhere continuously differentiable. This allows work with the continuous
version of Bellman’s equation.6 Therefore assume throughout that:

C1 Vi (·) is piecewise C1.

The approach of Tsutsui and Mino [TM90] and Dockner and Long [DL93]
requires the stronger assumption that Vi (·) ∈ C2; this will be seen to fol-
low automatically at most points when C1 holds. Against this, Dockner
and Sorger [DS96] allow a discontinuous value function; they then derive
MPE strategies which jump but preserve the continuity of Vi (·). Başar and
Olsder’s example 5.2 [BO99, ex 5.2, ch 8] demonstrates that value function
continuity may fail even in single agent optimisation problems; the optimal
control in their example follows a bang-bang pattern.

When agent 1’s value function is differentiable it solves Bellman’s equa-
tion:

δV1 (z) = max
x1≥0

[

−ξ2 − ν (z − ζ)2 + V ′ (z) (x∗2 − βz)− x21 + x1
(

2ξ + V ′ (z)
)

]

.

(2.5)
If situations in which the value function is not differentiable are encountered
it might be possible to progress by use of the left and right hand limits.

As the equation of motion makes it impossible that z (t) = 0 if z > 0
and as z̄ = ∞, no constraints are imposed on the state space in equation
2.5.

The non-negativity requirement on x1 provides a first order necessary
condition for the optimal control:

x∗1 ≡ max

{

0, ξ +
V ′ (z)

2

}

. (2.6)

As equation 2.5 is concave in x1, x
∗
1 is unique and a maximiser. Although x∗1

is unique, solutions to differential equation 2.5 will not be as they introduce
a constant of integration.7

2.2.3 The differential equation

Substitute the conditions of equation 2.6 into the Bellman equation 2.5. As
the differential equation generated produces a family of solutions, denote
the family of candidate value functions so generated by W; an individual
member of that family is referred to as W . Therefore V1 ∈ W. Substitute

x∗1 = x∗2 = max
{

0, ξ + V ′(z)
2

}

into the Bellman equation to obtain

6In the differential games literature this is often referred to as the Hamilton-Jacobi-
Bellman (HJB) equation.

7This is the case even when the shape of the value function is known as in, for example,
the case of a linear strategy, x (z) = az + b (so that V ′′ (z) = 2a) or Dockner and Sorger
[DS96] (strictly concave).
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δW (z) =

{

−ν (z − ζ)2 +W ′ (z) (2ξ − βz) + 3W ′(z)2

4 ,W ′ (z) ≥ −2ξ
−ξ2 − ν (z − ζ)2 − βzW ′ (z) ,W ′ (z) ≤ −2ξ

}

(2.7)
Symmetric play has now been imposed. The remainder of the analysis of
this problem may be broken into two steps. The first, and easier, solves
the two terms of equation 2.7; this occupies the next subsections. The
more difficult step involves refiningW in an attempt to identify constants of
integration consistent with the requirements of optimal play’s value function.
Equation 2.7 and its solutions therefore play an important role throughout
this chapter.

Corner solutions

The solution to equation 2.7 when W ′ (z) ≤ −2ξ is

W (z) = −ξ
2 + νζ2

δ
− ν

2β + δ
z2 +

2νζ

β + δ
z + Cz

− δ
β ;

where C is a constant of integration. The condition on W ′ (z) only allows
this to hold for values of z satisfying

2β

δ

[

ξ + ν
ζ

β + δ

]

z
1+ δ

β − 2βν

(2β + δ) δ
z
2+ δ

β ≤ C. (2.8)

z

C

0

C1

C2

Figure 2.1: Transitions between the corner and interior solutions

As the exponent on equation 2.8’s first term is smaller than that on the
second, it dominates for small values of z. For larger z, though, the second
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term overpowers it. Figure 2.1, a stylised plot of equation 2.8, illustrates
the implications of this for solutions. For large values of C (e.g. C2 in the
figure) the condition for the corner solution is always satisfied and x (z) = 0
is a solution to Bellman’s equation. For smaller values, e.g. C1, it is satisfied
for small z, is then violated, and finally is again satisfied for large values of
z. For all C ≤ 0 the condition is violated at small z but eventually comes
to hold. It is expected that, when the corner solutions violate condition 2.8,
the strategy will continue in the interior.

Interior solutions

The quadratic interior solution, equation 2.7 when W ′ (z) ≥ −2ξ, is solved
by differentiating it again.8 The next lemma demonstrates when this is
legitimate.

Lemma 2.4 When W (z) is defined by equation 2.7 and W ′ (z) ≥ −2ξ,
W (z) ∈ C∞ if

3

2
W ′ (z) + 2ξ − βz 6= 0. (2.9)

The proof first demonstrates that W (z) ∈ C2 when condition 2.9 holds;
it then extends this result to W (z) ∈ C∞.

Proof. Define a function, f , such that W = f (z,W ′) and note that
f ∈ C1. At points (z0,W ′

0) where f2 6= 0 there exists, by the inverse function
theorem, a g (z0,W0) ∈ C1 such that W ′ = g (z,W ) in the neighbourhood
of those points. As g and its arguments are members of C1 then so is W ′;
hence W ∈ C2 in these neighbourhoods.

Derive an expression for f2 ≡ ∂W (z)
∂W ′(z) by differentiating equation 2.7 when

W ′ (z) ≥ −2ξ with respect to W ′ (z). This yields

∂W (z)

∂W ′ (z)
=

1

δ

[

3

2
W ′ (z) + 2ξ − βz

]

;

so that f2 6= 0 ⇔ inequality 2.9.

The result follows by noting that f ∈ C∞.

Call the locus of points failing to satisfy inequality 2.9 the non-invertible
locus.9 The quadratic term in the interior component of equation 2.7 causes
this to pass through the feasible state-action space.10 On the other hand,
when condition 2.9 is not violated, the relevant portion of equation 2.7

8This is the approach taken by Tsutsui and Mino [TM90]. Dockner and Sorger [DS96]
present a case in which direct integration is possible.

9I am grateful to Bernhard von Stengel for suggesting that this be called the vertible

locus.
10In Appendix B the utility function u (x1, z) = lnx1 − (z − ζ)2 is considered; the non-

invertible locus there remains outside the feasible space.
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may be differentiated. For notational convenience define w (z) ≡ W ′ (z).
Therefore:

w′ (z) =
(β + δ)w (z) + 2ν (z − ζ)

3
2w (z)− βz + 2ξ

when x ≥ 0. (2.10)

Note that the denominator cannot equal zero as that would require f2 = 0
which, by Lemma 2.4, would have prevented the differentiation performed
to reach equation 2.10.

To solve equation 2.10 transform the equation into one that is homoge-
neous of degree zero in its variables by defining Ω ≡ w− a and Ψ ≡ z− b to
drop out its constant terms. This requires that

a ≡ 2ν
βζ − 2ξ

β (β + δ) + 3ν
; (2.11)

b ≡ 2ξ (β + δ) + 3νζ

β (β + δ) + 3ν
> 0; (2.12)

so that
a ≤ 0⇔ A1.

These definitions reduce the differential equation to

dΩ

dΨ
=

(β + δ) Ω + 2νΨ
3
2Ω− βΨ

;

or
dΩ

dΨ
= G

(

Ω

Ψ

)

≡ (β + δ) Ω
Ψ + 2ν

3
2
Ω
Ψ − β

. (2.13)

To take advantage of the homogeneity of equation 2.13 define S ≡ Ω
Ψ . There-

fore
[

S2 − 2

3
(2β + δ)S − 4

3
ν

]

dΨ =

(

2

3
β − S

)

ΨdS;

which has a trivial solution when 0 = 0. The RHS zero is attained when S
is a constant; that on the LHS is obtained by

S = {sa, sb} ≡
1

3

[

2β + δ ±
√

(2β + δ)2 + 12ν

]

; (2.14)

the real roots of the quadratic in S, with sa > 0 > sb. The trivial solutions
so found are

Ω

Ψ
= {sa, sb} ;

which may be transformed into the original variables for

xa ≡ ξ +
1

2
[a+ sa (z − b)] ; (2.15)

xb ≡ ξ +
1

2
[a+ sb (z − b)] . (2.16)
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Otherwise, when S /∈ {sa, sb}, solve

dΨ

Ψ
=

(

2
3β − S

)

dS

(S − sa) (S − sb)

=
γ1dS

S − sa
+

γ2dS

S − sb
; (2.17)

when γ1 and γ2 are determined by the method of partial fractions to be

γ1 ≡ δ

3 (sb − sa)
− 1

2
< 0;

γ2 ≡ −δ
3 (sb − sa)

− 1

2
< 0;

so that γ1 + γ2 = −1. Integrating equation 2.17 when S /∈ {sa, sb} then
yields

ln |Ψ| = K̂ + γ1 ln |S − sa|+ γ2 ln |S − sb| ; (2.18)

where K̂ is a real constant of integration. Exponentiation produces

|Ψ| = 1

K
|S − sa|γ1 |S − sb|γ2 ; (2.19)

where K ≡ e−K̂ ≥ 0. In terms of z and W ′ (z) this becomes

K =
∣

∣W ′ (z)− a− sa (z − b)
∣

∣

γ1
∣

∣W ′ (z)− a− sb (z − b)
∣

∣

γ2 .

The xa and xb solutions correspond to K = 0, possible when one of the RHS
terms is equal to zero.

Solutions to equation 2.7

To sum up these last two subsections, the solution to differential equation
2.7 is therefore

K = |W ′ (z)− a− sa (z − b)|γ1 |W ′ (z)− a− sb (z − b)|γ2

when W ′ (z) ≥ −2ξ;
(2.20)

and

W (z) = − ξ2+νζ2

δ
− ν

2β+δz
2 + 2νζ

β+δz + Cz
− δ

β

when W ′ (z) ≤ −2ξ.
(2.21)
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z

x

SSL: x = β
2 z

non-invert.

xa
xb

b

ξ + 1
2a

x6

x5

x4

x0

x1

x2
x3

ζ

ξ

Figure 2.2: Phase diagram generated by differential equation 2.7 when A1
holds

2.2.4 Defining candidate solution strategies

As K is arbitrary, equation 2.20 describes a family of infinitely many solu-
tions, X , with members x1. The upward and downward sloping solutions
corresponding to K = 0 have already been identified as xa and xb, respec-
tively. These intersect at (z, x1) =

(

b, ξ + 1
2a
)

> 0, inside the feasible (z, x1)
space. Further, when A1 holds, their intersection is above the climate glut
point (b > ζ) and below the product glut point (ξ + 1

2a < ξ). As there is a
non-unique solution to the differential equation at this intersection, call that
point a singularity and these strategies singular solutions. This notation is
expanded upon in Chapter 3.

Denote the x1 (z) = 0 corner strategy of equation 2.21 by x0. The
remaining six types, denoted x1, . . . , x6, are not unique; Figure 2.2 displays
representatives of these families. It also displays the steady state locus
(SSL), defined by dx1

dz
= 0, and the non-invertibility locus, along which

dx1
dz

= ±∞. In the present case, these are x1 = β
2 z and x1 = β

3 z + ξ
3 ,

respectively. Both of these objects appear throughout this chapter; the
non-invertibility locus also plays an important role in Chapter 3.

By equation 2.6, the initial Bellman equation’s first order condition,
W ′ (z) < 0 when x1 < ξ, implying that increases in the initial stock, z,
always reduce the value of the game when agent 1 plays at less than the
product glut level. This may seem particularly surprising when z < ζ and
above the SSL as z increases in time towards the climate glut point. This
benefit is apparently balanced by a loss in the product term and, in some
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cases, a moving more quickly in time beyond the climate glut point.

A family of indifference curves could also be overlaid on this diagram.
They would centre on the glut point (ζ, ξ) and could be parameterised by c:

x21 + νz2 − 2ξx1 − 2νζz + c. (2.22)

When ν = 1 these describe circles; otherwise they are ellipses. When ν < 1
deviations from the optimal climate are less costly than those from the
optimal output and the ellipses have

z = ζ −
√

ξ2 + ζ2ν + c

ν (1− ν)
;

as their (vertical) directrix and
(

ζ −
√

ξ2+ζ2ν+c
ν(1−ν) , ξ

)

as their foci. When

ν > 1 the directrix will be horizontal and the major axis vertical.

Candidate strategies must be able to map from any element of the state
space, Z. The x6 family of strategies, x0 and xa (when it does not intersect
the horizontal axis) already do so. The interior solutions xb, x3 and xa (when
it does intersect the horiztonal axis) are extended by x0 when they trigger
the auxiliary condition, W ′ (z) = −2ξ; denote these extensions by a caret
so that x̂p ≡ max {0, xp}, where p indexes solution families. As these are all
integrable, they all give rise to unique solutions to equation of motion 2.3
and therefore represent admissible strategy pairs.

Lemma 2.5 Members of the x1, x2, x4 and x5 families of solutions to dif-
ferential equation 2.7 cannot form candidate MPE strategies.

Proof. Members of the x1, x2, x4 and x5 solution families cannot be
extended by x0 as, when they cease to be functions in Z, they do not satisfy
the auxiliary condition on W ′ (z). As they do not specify play for all z ∈ Z
they cannot be candidate strategies.

It is tempting to consider jumps from one of these solutions to, say,
x0. However, no strategy constructed with jumps like this solves differential
equation 2.7.

Note also that a candidate MPE strategy cannot switch from xa to xb

(or vice versa) at their intersection as the ensuing kink would violate Section
2.2.3’s requirement that V (z) ∈ C2 throughout interior play. Kinks during
the transition from interior to corner play are acceptable as C1 only requires
that V (z) is piecewise C1.

2.2.5 Refining the candidate strategy set

A solution to differential equation 2.7, W (z), is still two steps removed
from describing payoffs under MPE play. First, it must be demonstrated
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that W (z) = V (z), that the candidate value function is a value function.
Lemma A.1 in Appendix A provides necessary and sufficient conditions for
this identification. Second, play arising from the value functions must be
best responses to each other, not merely to some fixed play. Theorem A.2,
also in Appendix A, provides a sufficient condition for this.

Most of the candidate MPE strategies are discarded here without di-
rect reference to the appendix’ results. Those results are more useful when
attention turns from discarding possible strategies to proving that x̂b and,
occasionally, some of the x̂3 candidate do support MPE.

Glut point and corner deviations: x̂a, x̂6, x0 and x̂3

Lemma 2.6 W (z) 6= V (z) along x̂a and the x6 family of strategies.

Proof. Along x̂a: z →∞⇒W ′ (z)→∞⇒W (z)→∞, an impossible
integral of the bounded above instantaneous utility function 2.1. As x6 (z) >
x̂a (z), the x6 family produces the same contradiction.

As the lemma and theorem of Appendix A provide conditions whereby
candidate strategies may be dismissed from further consideration, it might
be thought that Lemma 2.6 interacts with the results in the appendix. It
does not: Lemma A.1 is inapplicable to this situation due to the inde-
terminate limT→∞W (z (T )) along these strategies. For the same reason,
Theorem A.2 would not assist even were W (z) a value function.

The argument that x̂a and the x̂6 family do not provide candidate MPE
strategies may be illustrated by demonstrating a profitable deviation from
their play: as sa > β, there is a z such that ż > 0 and x (z) > ξ for all greater
values of z along these strategies. An agent can then improve its payoff by
capping play at xi = ξ; doing so sets the utility loss term in production
to zero and slows the climate loss term’s growth (as compared to playing
xi > ξ).

Discarding x̂a and the x6 family leaves only the x0, x̂b and the x̂3 family
of strategies to consider as possible MPE strategies.

Lemma 2.7 W (z) 6= V (z) in any candidate that satisfies x (0) = 0 and
possesses constant of integration C 6= 0 in that cornered component.

Proof. By equation 2.21

lim
z→0

W (z) = −ξ + νζ2

δ
+ C lim

z→0

1

z
δ
β

.

When C > 0, this unbounded limit again contradicts the bounded above
instantaneous utility function. As noted in equation 2.8, which provided
the condition for the solution to equation differential 2.7 to remain in the
corner, C < 0 and x (0) = 0 are contradictory.
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The candidate with C = 0 is not eliminated by Lemma 2.7; it leaves
x (0) = 0 immediately.

Again, express this rejection of x (0) = 0 in terms of profitable deviations
by considering play at z < ζ, the glut climate. The cornered strategy
requires that agent 1 accept a climate loss as z continues to fall; defection
to some small x1 > 0 reduces the climate loss and provides a production
gain.11

Therefore:

Lemma 2.8 x̂b is the only remaining candidate strategy when

a− sab ≤ −2ξ. (2.23)

Proof. As the x̂3 strategies are bounded above by x̂a, Lemma 2.7 rules
out all x̂3 when x̂a (z) = 0 for z > 0; this happens when condition 2.23
holds.

Condition 2.23 is used later in this chapter to explore conditions under
which the game yields a unique MPE.

MPE strategies: x̂b and x̂3 (0) > 0

Having discarded various families of solutions from further consideration,
this subsection now establishes positive results, proving that certain candi-
dates do support MPE.

Theorem 2.9 x̂b and any x̂3 (0) > 0 candidates are MPE strategies.

The results in Appendix A are necessary to prove this result. Lemma
A.1 is satisfied by these strategies: they are continuous and cause the state
variable to converge to a finite z∗. Theorem A.2 requires a finite limit on
the value function against deviant strategies, and therefore any z ∈ Z. As
the value functions under consideration here are continuous, it is sufficient
to test them at extreme values of z, zero and infinity. As the instantaneous
utility function is unbounded below, the limit is not obviously satisfied if
the deviant strategy being considered sets zT =∞.

To circumvent this problem, a modified game is introduced here. Two
lemmata then prove that results on the modified game apply to the original
game.

11Similar reasoning would also apply to an x̂3 member for which x (0) > 0 but which
then declined to x (z) = 0 at some 0 < z < ζ. Equation 2.8 reveals that this is an
impossibility: the x̂3 path that passes through (0, 0), and therefore attains x (z) = 0
at the lowest z, is identified by C = 0 along its corner component. This constant sets

x (z) = 0 at z ∈
{

0, 2β+δ

ν

(

ξ + νζ

β+δ

)}

. As this second value exceeds ζ for non-negative

parameters, the impossibility is established.



2.2. A linear-quadratic model 31

Therefore consider a bounded version of the instantaneous utility func-
tion 2.1,

u (x1, z) = max {u, u (x1, z)} ;
where the finite constant u is chosen so that Bellman’s equation produces the
same set of candidate strategies as under the original instantaneous utility
function; this merely requires that u be sufficiently negative to ensure that
it is never attained by candidate play. It may need to be very large and
negative if the initial stock level is very large.

Lemma 2.10 x̂b and the any x̂3 (0) > 0 members from the original model
represent MPE play in the game with the modified instantaneous utility func-
tion.

Proof. As the candidate set, W, is the same as in the unmodified
game, the same refinements may be performed, leaving x̂b and the remain-
ing x̂3 (0) > 0 members from the original model as candidates. As the
modified instantaneous utility function is bounded, the value functions of
these strategies, V (z), are also bounded. Any play therefore generates a
bounded value, satisfying Theorem A.2.

Lemma 2.11 MPE strategies in the modified model are MPE strategies in
the original game.

Proof. By choice of u, the payoffs of candidates strategies are the same
in each model so that V (z) = V (z) for any given candidate strategy. Fur-
ther, as the instantaneous payoff to any strategy under the bounded model
is no worse than that under the original, V (z) ≤ V (z) for all strategies,
including deviations. If deviations are not sufficient to eliminate the x̂b and
surviving x̂3 strategies in the modified model and are no more profitable in
the original model then the x̂b and surviving x̂3 strategies survive in it as
well and are therefore MPE strategies.

Therefore x̂b, the downward-sloping linear solution, is not just a MPE
when strategies are restricted to be linear (a well known result; q.v. [BO99, p.
324]. The sufficient conditions presented by Lockwood [Loc96] for a unique
affine equilibrium strategy are satisfied here.), but is also in the larger space
of piecewise C1 strategies. As condition 2.23, when it holds, leaves x̂b as
the unique MPE strategies, extreme cases are now explored to see when it
might be the only solution.

2.2.6 Unique MPE strategies?

In general, both linear and non-linear strategies may support MPE in the
linear-quadratic game. This section explores certain hypothetical extreme
cases in an attempt to develop an intuition for when the linear alone survives.
They are hypothetical as they set a parameter to zero, in contravention of
the previous requirement that these all be strictly positive.
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Perfectly patient agents (δ = 0)

First consider perfectly patient agents, δ = 0. Substitution into condition
2.23 now produces the quadratic in ξ

ξ2
(

β2 − ν
)

+ ξ (4βνζ) + 3ν2ζ2 ≥ 0. (2.24)

This holds when
ζ

ξ
≥
√

β2 + 3ν − 2β

3ν
;

a sufficient condition for which is that β2 ≥ ν. In these cases x̂b, the strategy
with the greatest steady state stock level, is the unique MPE strategy. An
interpretation of this result is that large climate glut (ζ) relative to prod-
uct glut (ξ) and rapid degradation (β) relative to climate sensitivity (ν)
favour high steady state stocks levels. This interpretation is not, however,
an explanation.

Can the first best be attained? Perfectly patient agents suggest the
possibility that the first best steady state of equation 2.4, (zfb, xfb), might
be attained by a MPE strategy; it cannot be reached by unilateral deviation
by a single agent as it is symmetric.

Lemma 2.12 When assumption A1 holds with equality, the steady state of
the linear MPE, x̂b, is that of the first best for perfectly patient agents.

Proof. When agents are perfectly patient, the state at the first best
identified in equation 2.4 reduces to

zfb = 2
βξ + 2νζ

β2 + 4ν
.

Similarly, substitution of the expressions for a, b and sb in Section 2.2.3,
finds the intersection of x̂b and the SSL for perfectly patient agents to be

z =
6

β2 + 3ν

1
3β

2ξ + νξ +
(

2
3βξ + νζ

)
√

β2 + 3ν

β + 2
√

β2 + 3ν
.

When βζ = 2ξ is imposed with equality, these reduce to

zfb =

ξ2

ζ
+ νζ

ξ2

ζ2
+ ν

=
1
1
ζ

= ζ; and

z =
4 ξ

3

ζ2
+ 3νξ +

(

4 ξ
2

ζ
+ 3νζ

)

√

4
(

ξ
ζ

)2
+ 3ν

4
(

ξ3

ζ2

)

1
ζ
+ 3νξ 1

ζ
+
(

4
(

ξ2

ζ

)

1
ζ
+ 3νζ 1

ζ

)

√

4
(

ξ
ζ

)2
+ 3ν

= ζ;
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respectively.
Similar calculations reveal that, when A1 holds with strict inequality,

(zfb, xfb) has a lower stock and emissions level; the opposite occurs whenA1
does not hold. In the former case, there may be x̂3 MPE strategies whose
steady states coincide with the first best; in the latter, there are certainly
not. Therefore, only when A1 holds with strict inequality is it possible for
the steady state of an x̂3 MPE to be preferred to that of x̂b.

Unilateral global deviations from the steady state A perfectly pa-
tient agent may also contemplate global deviations from the steady state.
Define a new locus, the asymmetric steady state (ASSL), such that

xA + x̂− βz = 0; (2.25)

where x̂ is the strategy played by the non-deviating agent and xA is that
played by the deviant. Given some x̂, then, this locus is unique; it intersects
the SSL defined by x = β

2 z at xA (z) = x̂ (z). The ASSL is the locus of
steady states attainable by unilateral deviation. A perfectly patient agent
may therefore ask whether it contains points that yield a higher steady state
payoff than that resulting from play of x̂.

To determine this, allow agent 1 to maximise its instantaneous utility,
subject to the constraint that its choice lie on the ASSL. The agent’s problem
is therefore to

max
z

[

− (βz − x̂ (z)− ξ)2 − ν (z − ζ)2
]

;

which yields first order conditions

(βz − x̂− ξ)

(

β − dx̂

dz

)

+ ν (z − ζ) = 0.

The relationships in equations 2.6, the first order conditions from the original
Bellman equation, and 2.10, the differential equation describing interior play,
allow this to be rewritten as

(βz − x̂− ξ)

(

β − β (x̂− ξ) + ν (z − ζ)

3x̂− βz − ξ

)

+ ν (z − ζ) = 0;

which simplifies to

[β (βz − x− ξ) + 2ν (z − ζ)] [2x− βz] = 0. (2.26)

Therefore, x = β
2 z, the SSL, satisfies this. As the original constraint

required the choice to lie along the ASSL as well, one solution to agent 1’s
optimisation problem is that dictated by non-deviating play of x̂. Another
solution to equation 2.26 is

x = βz −
(

ξ − 2ν (z − ζ)

β

)

.
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As the question of when this line intersects with a candidate x̂ becomes
mired in algebra, it is not pursued.

As a final note, a linear candidate strategy is sufficient for the solutions
to equation 2.26 to be maxima. This is readily seen by noting that the
second order conditions require

(

β − x̂′
)2 − x̂′′ (βz − x̂− ξ) + ν ≥ 0.

No environmental decay (β = 0)

Substitution into condition 2.23 and manipulation now yields a condition in
the relative glut levels

ζ

ξ
≥ 1

6ν

[
√

δ2 + 12ν − 5δ
]

. (2.27)

Preferences for a greenhouse gas saturated atmosphere, without the possi-
bility of reduction, make it more likely that only x̂b survives. A sufficient
condition for only x̂b to survive is that the right hand side of inequality
2.27 be negative. This requires that 2δ2 ≥ ν: high impatience relative to
environmental sensitivity only leaves the candidate with the highest steady
state stock level, x̂b. Again, this interpretation does not explain why only
the linear MPE strategy survives.

Climate insensitive (ν = 0)

Now inequality 2.23 reduces to the condition that

β + 2δ ≥ 0;

which holds for all non-negative parameters. In these cases x̂b, the unique
MPE strategy, reduces to x (z) = ξ: without a stock effect, there is no
interaction between the agents; they simply optimise with respect to pro-
duction.12

Equilibria when assumption A1 fails

Assumption A1 on page 21 required that βζ ≤ 2ξ. Until now, it has been
assumed to hold. As values of β, ξ and ζ can cause it not to, a number of
consequences of its failure are now examined to see whether this alters any
of the results above. Consequences of A1’s failure include:

1. a > 0 (equation 2.11);

2. xa and xb intersect at a higher stock and emissions level than the glut
levels;

12This result replicates that of Dockner and Long [DL93].
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3. xa and xb intersect below the SSL.

As the slope of the SSL is less than that of xa for all non-negative
parameters, xa therefore intersects the horizontal axis, satisfying condition
2.23, that excluding the x̂3 strategies. As the techniques used to discard
candidate strategies when A1 held rule out the same strategies when A1 is
violated, x̂b is the unique MPE.

2.2.7 Does the world have a unique equilibrium?

Clearly, the model developed here is incredibly crude when compared to
the interactions around GHG that may be taking place in the world today.
Nevertheless, an attempt at calibration is made here to see whether the
continuum of MPE might be expected to survive under plausible parameter
values.

The longest atmospheric carbon dataset is the Vostok ice core set, which
extends back some 420,000 years.13 It reveals the historical range of atmo-
spheric carbon to be about (380, 760) Gt, the upper limit only now being
reached. The series appears stationary over this period. While a half million
years is not a long period geologically, and it is not clear whether the series
is stationary over longer periods, this range seems as good a guess as any
for the optimal greenhouse gas stock, ζ. Therefore assume ζ ∈ [380, 760].

Calibrating ξ is equally questionable as ξ represents the optimal produc-
tion of fictitious symmetric agents. Here it is more reasonable to assume
that optimal production is close to what nations actually do but the ques-
tion becomes one of what they actually do. One option is to use the USA,
the world’s largest emitter, as one agent and the rest of the world as the
other. The USA emitted roughly 1.4 Gt of carbon in 1990 while the world
emitted 6.1 Gt of carbon from industrial processes’ carbon dioxide in 1991.14

A range for ξ might therefore be ξ ∈ [1.4, 3.0], the lower bound coming from
the US emissions and the upper from half the global total (the world being
divided into two symmetric agents).

The relative concern for industrial output and environment amenities,
ν, require similarly heroic assumptions. The estimate here is based on the
consensus finding of economic studies that a doubling of pre-industrial CO2

levels (600 Gt) will lead to a 1 - 2% GDP loss [Int95]. If a doubling of the
stock from 600 Gt has the same effect on instantaneous utility as a 1 - 2%

13Atmospheric carbon is not the only GHG but its product, CO2, is commonly used as a
proxy for the others; that practice is followed here. While less abundant than atmospheric
carbon, methane and CFCs are, per molecule, more potent in terms of their contribution
to the greenhouse effect than CO2. A stock estimate based on Vostok data therefore likely
understates ‘effective’ stock.

14The source for the data used here is the UNEP webpage,
http://www.unep.ch/iucc/fact30.html, unless otherwise noted.
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production decrease then

− (Lx̂− ξ)2 − ν (z0 − ζ)2 = − (x̂− ξ)2 − ν (2z0 − ζ)2 ;

where z0 = 600 Gt, the preindustrial stock, x̂ is current production (if it is
optimal when the atmosphere is ignored x̂ = ξ) and L is the production loss
coefficient, L ∈

{

98
100 ,

99
100

}

. This may be solved for

ν =
(L− 1) x̂

z0

(L+ 1) x̂− 2ξ

3z0 − 2ζ
.

If x̂ = ξ, z0 = 600, ζ and L range as above and ν ≥ 0 then ν ∈
(

0, 2.1× 10−8
]

.
Nordhaus’ work [Nor94] is vandalised to estimate β. His discrete equa-

tion of motion for greenhouse gas stocks is

M (t)− 590 = β · E (t− 1) + (1− δM ) · [M (t− 1)− 590] ;

whereM (t) are atmospheric stocks, β the atmospheric uptake ratio, E (t− 1)
the previous period’s emissions and δM the rate of transfer from the upper
reservoir (the atmosphere) to the lower reservoir (the oceans and soils). He
estimates δM = .0083 per decade (the units in which he measures time).
Ignoring his 590 threshold, assume that the fraction of the stock retained
by the atmosphere after a decade is (1− .0083) in the absence of further
emissions. In the present notation again

z (t) = e−βtz0

z (10) = .9167z0 = e−10βz0;

or β ≈ .0087 ≈ 1
115 (as t is measured in years).

A range of plausible values for δ may be derived from the Euler equation
of the life-cycle savings problem in the utility function u (c), where c is
consumption, u′ > 0 and u′′ < 0:

δ = r +
u′′ (c)

u′ (c)
g · x0 · egt;

where r is the real rate of interest facing consumers and g the real growth
rate. Therefore δ ≤ r and could be as low as zero. Consider δ ∈ (0, .02],
where the upper bound is an estimate of the real rate of interest.

Now test condition 2.23 by rearranging it for

a− sab+ 2ξ ≤ 0;

and maximising the left hand side by choice of δ, ν, ξ and ζ, as constrained
above. As a point estimate exists for β, it is not regarded as a choice variable.
This maximisation is a harsher test than necessary as ν depends on ξ and
ζ; this harshness is repaid, though, by allowing the problem to be treated as
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one that is linear in ξ and ζ. Maximisation may therefore take place with
respect to these independently of choice of δ and ν. The extremal values
ξ∗ = 3 and ζ∗ = 380 are found.15

Now maximise by choice of δ and ν by writing the Lagrangian

L (δ, ν, λ, γ) = 3







2ν +
2

3

(

1

115
+ δ

)





1

115
− δ −

√

(

2

115
+ δ

)2

+ 12ν











−380ν



δ +

√

(

2

115
+ δ

)2

+ 12ν





−λ1
[

δ − 1

50

]

+ λ2δ − γ1
[

ν − 5.4× 10−7
]

+ γ2ν.

There are nine cases to consider, with each of δ and ν taking on an extremal
value at their upper or lower bounds or in the interior of their ranges. An
interior ν when δ = 0 turns out to require a complex ν, a contradiction.
Both other interior cases for ν produce inadmissible signs on multipliers,
also contradictions. When ν = 0, only δ = 0 does not violate similar
sign conditions. Finally, when ν = 5.4 × 10−7, all cases of δ yield sign
contradictions. Therefore (δ∗, ν∗) = 0 solves this problem and the harsh-
est combination of variables to which condition 2.23 can be subjected is
(β, δ, ν, ξ, ζ) =

(

1
115 , 0, 0, 3, 380

)

. As this sets

a− sab+ 2ξ − 2

3
ξ∗ (1 + 4β∗) ≈ −2 < 0;

condition 2.23 always holds.
This result allows a conclusion to be drawn from this thought experiment.

If it is believed that the linear-quadratic model presented here might bear
some resemblance to the real world, then the calibration attempted in this
section suggests that the real world is likely to satisfy the conditions for a
unique MPE, that in linear strategies.

2.3 A nonlinear model: finite atmospheric capac-
ity

The model examined to date gave the atmosphere the capacity to absorb
an infinite greenhouse gas stock. This assumption allowed use of a linear-
quadratic game but is unrealistic in the present context for at least two
reasons. First, the world only contains a finite supply of carbon and the
other constituents of greenhouse gases. Second, the atmosphere will be-
come saturated, shedding stock more quickly, as concentrations climb. This

15When the coefficient of ξ is negative, condition 2.23 is automatically satisfied.
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second observation suggests a change in specification of the decay term of
the equation of motion, βz (t). This section therefore illustrates the conse-
quences of a non-constant decay term. As the candidate strategies derived
are more complicated than those considered to date, no attempt is made to
present the MPE set.

Consider β (z) ≡ θz(t)
z̄−z , where θ > 0. Therefore β ′ (z) > 0, reaching

a vertical asymptote at z̄, atmospheric capacity. The new state space is
Z̄ ≡ (0, z̄). The new equation of motion,

ż = x1 (t) + x2 (t)−
θz (t)

z̄ − z (t)
s.t. z (0) = z > 0; (2.28)

removes the game from the linear-quadratic world but does not change the
first order necessary conditions (equation 2.6) of the new Bellman equation.
Note that x1 = x2 = z = 0 ⇒ ż = 0. As equation 2.28 cannot be solved
as easily as was its predecessor, equation 2.3, admissibility of strategies is
also more complicated than it was in Section 2.2. Cauchy’s Theorem for a
unique solution requires that xi ∈ C1, i ∈ 1, 2 and z (t) 6= z̄; these are taken
as necessary conditions for admissible strategies.

To proceed, again invoke symmetry and substitute in the first order
conditions.

The corner solution still holds when W ′ (z) ≤ −2ξ; it produces the dif-
ferential equation

δW (z) = −ξ2 − ν (z − ζ)2 −W ′ (z)
θz

z̄ − z
;

from the Bellman equation. The solution to this is

W (z) =
1

θ

(

ez

zz̄

) δ
θ

{

Cθ +

∫

(z̄ − z)

z

(

zz̄

ez

)
δ
θ [

−ξ2 − ν (z − ζ)2
]

dz

}

;

where C is a constant of integration. Again, the condition onW ′ (z) imposes
a condition on z for any C.

In the interior portion of the solution the differential equation, differen-
tiate again for

w′ (z) =

(

δ + θ

(z̄−z)2
)

w + 2ν (z − ζ)

3
2w + 2ξ − θz

z̄−z
. (2.29)

This second differentiation is permitted by the assumption that xi ∈ C1. In
(z, x1) space, equation 2.29 is

dx1
dz

=

(

(z̄ − z)2 δ + θ
)

(x1 − ξ) + ν (z − ζ) (z̄ − z)2

(z̄ − z) [(3x1 − ξ) (z̄ − z)− θz]
; (2.30)

when x1 > 0.
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As analytic solutions to these differential equations are not found, stan-
dard phase diagram techniques are used. First, define loci based on set-
ting the numerator and denominator of equation 2.30 to zero. The non-
invertibility locus, D (z), sets the denominator to zero:

D (z) ≡ 1

3

{

ξ +
θz

z̄ − z

}

;

whenever z 6= z̄. Therefore D′ (z) > 0∀z ∈ Z̄,D (0) = 1
3ξ and D (z) = 0 is

solved uniquely by z = ξ
ξ−θ z̄ /∈ Z̄.

The locus of points setting the numerator to zero, N (z), is

N (z) ≡ ξ − ν
(z − ζ) (z̄ − z)2

(z̄ − z)2 δ + θ
.

Thus N (z) ∈ C1∀z ∈ Z̄,N (0) = ξ + ν ζz̄2

δz̄2+θ
and N (ζ) = N (z̄) = ξ. As

N (z̄) is a local maximum, a local minimum occurs at some z1 ∈ (ζ, z̄).16

N (z), as a cubic, has up to three real roots.

Finally, the steady state locus (SSL) is S (z) ≡ θz
2(z̄−z) . Therefore S (z) ∈

C1, S′ (z) > 0∀z ∈ Z̄ and S (0) = 0. Note that D (z2) = S (z2) = ξ, where
z2 ≡ 2ξ

2ξ+θ z̄ ∈ Z̄. As the intersections of N (z) and the other two loci are
more complicated, characterisation is not attempted.

The argument for refining the strategies is developed graphically, with
reference to Figure 2.3. The main loci, N (z) , D (z) and S (z), are displayed;
the signs of the former two, which set the numerator and denominator in
equation 2.30 to zero, are indicated off the loci. A few strategies are sketched
in to provide a sense of the dynamics. As they resemble those in the linear
world of Figure 2.2, the same labelling convention is used.

The configuration displayed in Figure 2.3 is not the only one possible.
For example, N (z) may intersect the horizontal axis or N (z) and D (z) may
intersect each other above x1 = ξ. The analysis presented below, though,
includes these cases as well. As above, the focus is on eliminating candidate
strategies.

First eliminate strategies intersecting D (z) at any point other than its
intersection with N (z): as in the linear world, these are not functions.

As in Section 2.2.5, the xa and x6 strategies may also be eliminated.
This is done by considering the same deviation as there, capping play at
x1 (z > ζ) = ξ. Lemma 2.6 does not apply when the state space is bounded
above.

16The root, z1 solves the cubic

δz
3
1 + (3δz̄) z2

1 − 3
(

δz̄
2 + θ

)

z1 + δz̄
3 + (2ζ + z̄) θ = 0;

when z 6= z̄.
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Figure 2.3: A representative world with non-linear equation of motion, 2.28

Finally, eliminate x0 and all x3 strategies for which x̂3 (z < ζ) = 0, where
the caret indicates an extension to the corner solution. Again, these can
be profitably deviated from when z < ζ. As before, all x̂3 strategies are
eliminated when x̂a intersects the horizontal axis within the state space.
The condition for which this holds, although complicated, can be calculated
from differential equation 2.30.

Therefore the only candidates that may survive are x̂b and some of the
x̂3. Their survival depends on Lemma A.1 and Theorem A.2. As their ap-
plication requires more information on the candidate strategies’ behaviour,
no further statements are made about them here.

2.4 Discussion

The key result of this chapter is that, under certain calibrations, the linear-
quadratic game has a unique linear MPE while, under the remaining cal-
ibrations, it has a continuum of non-linear MPE as well. The latter case
may seem peculiar as the linear x̂b strategy and the non-linear x̂3 strategies
appear quite different in (x, z) space. They appear more similar, though,
when regarded as being parameterised by K, the constant of integration in
equation 2.20. This allows x̂b to be seen as the limit of the x̂3 strategies as
K goes to zero.

The dependence of the equilibrium set on calibration means that the
correspondence mapping between the parameters of this game and its MPE
set is not continuous, the latter exploding when the uniqueness condition
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fails. The strict inequality in that condition (condition 2.23 on page 30),
meaning that the explosion requires a − sab > −2ξ, makes the candidate
correspondence lower hemi-continuous but not upper hemi-continuous (as
the graph is not closed). The game is therefore not essential in the sense
of Fudenberg and Tirole [FT91, Definition 13.6]: small perturbations to the
parameters of the objective function may cause large perturbations to the
MPE set.

These results are more complicated than those presented in Tsutsui and
Mino [TM90]. While the continuum result does not survive all calibrations
of the linear-quadratic model, it does seem robust to a variety of game
specifications; that considered in Appendix B yields a continuum of MPE,
as does that analysed in Dockner and Sorger [DS96].

The explanation that Tsutsui and Mino gave for the survival of the con-
tinuum is straightforward: the transversality conditions applied were insuf-
ficient to eliminate all but a unique solution to the differential equation. A
similarly technical answer exists to explain the present phenomenon: some-
times the various filters applied are sufficient to eliminate all but a linear
solution; otherwise, they are not.

For the most part, no economic intuition has been found for these results.
One minor exception to this is the case in which agents are insensitive to
climate (ν = 0). In this degenerate case, the game reduces to a static
optimisation problem in which each agent minimises its production loss by
choice of production. This yields the unique solution which sets production
loss to zero.

Before considering a full treatment of asymmetric nations, developed
over the next chapters by numerical analysis, a special case is now considered
in Appendix C; that asks whether corner play by one agent may be an
equilibrium strategy.
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Appendix A

Transversality conditions

This appendix presents a lemma and a theorem. The lemma provides a
necessary and sufficient condition for a candidate value function, W (), to
be a value function, V (). The theorem provides a sufficient condition for
a strategy pair, (x∗1 () , x

∗
2 ()), to support a MPE. Both involve limits on

(candidate) value functions.1 In the lemma, value has the sense of 19, the
present discounted value of utility. In the theorem, value has the sense of
21, the best response to fixed play by the other agent.

Both results apply to the more general utility function u (x, z); neither
requires nor implies symmetry of agents and both hold for any equation of
motion that is linear in its controls.

Lemma A.1 Given two admissible strategies, x̂1 and x̂2, the instantaneous
objective function u (xi, z), where z is a state variable whose equation of
motion, ż (x1, x2, z), is linear in the controls x1 and x2, if

δW1 (z) = u (x̂1, z) +W ′
1 (z) ż (x̂1, x̂2, z) ; (A.1)

then a necessary and sufficient condition for W1 () to be a value function,
V1 (), is that limT→∞ e−δTW1 (ẑT ) = 0, where ẑT is the state after play of
x̂1 () x̂2 () over t ∈ [0, T ] from initial state z0.

Proof. Rewrite equation A.1 by collecting the terms in W1 (z) and
multiplying by e−δt for

d

dt

[

e−δtW1 (z)
]

= −e−δtu (x̂1, z) .

Integrate over [0, T ] for

W1 (z0) =

∫ T

0
e−δtu (x̂1, z) dt+ e−δTW1 (ẑT ) .

1Tsutsui and Mino’s existence proof [TM90, Theorem 1] does not explicitly consider
limits but that paper’s bounded state space plays the same role.
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As this becomes

W1 (z0) =

∫ ∞

0
e−δtu (x̂1, z) dt+ lim

T→∞
e−δTW1 (ẑT ) ; (A.2)

in the limit and the first term on the right hand side is the payoff to optimal
play it is necessary and sufficient that limT→∞ e−δTW1 (ẑT ) = 0 for W1 (z)
to be a value function, V1 (z), the sum of discounted utility.

When x̂1 () = x∗1 (), defined according to equation 3.3, theW1 () functions
defined in equation A.1 are solutions to the differential equation generated
by the Bellman equation.

The next theorem asks whether a sustained deviation, x1, can obtain
a superior payoff to an x∗1 satisfying the Bellman equation against x∗2 by
effecting a global deviation before returning to optimal play. In other words,
is x∗1 a best response to x∗2?

Theorem A.2 Given the instantaneous objective function and equation of
motion of Lemma A.1, any admissible strategy x∗2 (z), an admissible strategy
x∗1 (z) satisfying

δV1 (z (t)) = u (x∗1 (z (t)) , z (t)) + V ′1 (z (t)) ż (x
∗
1, x

∗
2, z)

≥ u (x1 (z (t)) , z (t)) + V ′1 (z (t)) ż (x1, x
∗
2, z) ;

(A.3)

for all admissible x1 (z), then a sufficient condition for x
∗
1 (z) to be a best

response to x∗2 (z) is that limT→∞ e−δTV1 (zT ) ≥ 0, where zT is the result of
any play, x1 (z (t)) against x

∗
2 (z (t)) over t ∈ [0, T ] from initial state z0.

Proof. Differentiate the discounted value function for

d

dt

[

e−δtV1 (z (t))
]

= e−δt
[

V ′1 (z (t)) ż (x
∗
1, x

∗
2, z)− δV1 (z (t))

]

≤ e−δt
[

V ′1 (z (t))
(

żx∗1 − żx1

)

− u (x1, z)
]

= −e−δtu (x1, z) ;

the last line proceeding from the inequality in equation A.3 and the linear
equation of motion, respectively; żx1 ≡ ∂ż

∂x1
, żx∗1 ≡

∂ż
∂x1
|x1=x∗1

. Integrating
the first and last elements of this expression over [0, T ] produces

∫ T

0
d
[

e−δtV1 (z (t))
]

≤ −
∫ T

0
e−δtu (x1, z) dt.

Solving the LHS and taking the lim as T →∞ then produces

V1 (z0) ≥
∫ ∞

0
e−δtu (x1, z) dt+ lim

T→∞
e−δTV1 (zT ) .

For x∗1 (z) to be a best response to x∗2 (z) it must be that

V1 (z0) ≥
∫ ∞

0
e−δtu (x1, z) dt.
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The condition ensures this.
When the value function associated with x∗2 () satisfies the same condi-

tions then (x∗1 () , x
∗
2 ()) support a Nash equilibrium.
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Appendix B

No production glut

This appendix examines a version of the game in which the first term in the
instantaneous objective function is now logarithmic rather than quadratic
(cf. the original instantaneous utility function, equation 2.1):

u (xi, z) = lnxi − (z − ζ)2 , i ∈ {1, 2} .
This is explored as an attempt to determine to what extent the LQG results,
including the possibility of multiple equilibria, depend on the LGQ game
specification.

With linear equation of motion 2.3, the Bellman equation is

δV1 (z) = max
x1≥0

{

lnx1 − (z − ζ)2 + V ′ (z) (x1 + x∗2 − βz)
}

;

which has the first order necessary condition

x∗1 = max

{

0,
−1

V ′ (z)

}

;

and yields the differential equations

δW (z) =

{

− ln [−W ′ (z)]− (z − ζ)2 − 2− βzW ′ (z)
ln [0]− (z − ζ)2 − βzW ′ (z)

}

when W ′ (z)

{

≤
≥

}

0;

when play is symmetric and W (z) are the candidate value functions. The
corner is always avoided due to the ln 0 term in its payoff.

The interior, defined by W ′ (z) < 0, does not have an explicit solution
but a phase diagram may be constructed from

w′ (z) =
2 (z − ζ) + (β + δ)w (z)

1
w(z) − βz

;
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z

x

SSL: x = β
2 z
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dz

= 0, x = 0
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= 0, x = β+δ
2(z−ζ)

Figure B.1: Logarithmic production felicity

where w (z) ≡W ′ (z), or

x′ (z) = x
β + δ − 2 (z − ζ)x

x+ βz
.

The two loci of points for which dx
dz

= 0 are therefore x = 0 and x = β+δ
2(z−ζ) .

Above the second (in (z, x) space), which asymptotes vertically from z = ζ,
dx
dz

< 0. As this locus then continues outside of the feasible state-action
space all candidate strategies have positive slope as z approaches zero. The
non-invertible locus, for which dx

dz
= ±∞, is also outside the feasible space.

Note that those strategies that remain below the SSL may be discarded:
a deviation, for example, to the SSL, would be preferable to falling below
z = ζ (and suffering climate loss) while also reducing production.

This game yields a simpler phase diagram than the original: compare
Figure B.1 to Figure 2.2. Again, a continuum of MPE exist. Lemma A.1
holds as candidate strategies converge to the SSL as T → ∞, where they
yield finite payoffs. The same problem as was encountered in the linear-
quadratic game is encountered when testing Theorem A.2: the unmodified
instantaneous utility function is unbounded below. Again, though, a u can
be defined below the lower bound of the lowest instantaneous payoff to
the candidate strategy. One difference between the two sets of candidate
strategies is that, in the linear-quadratic game, their intersections with z = 0
are bounded below by x = 0 and above by x̂b; here the candidate strategies
are not bounded above at z = 0. This difference does not seem to affect the
MPE set.



Appendix C

The asymmetric corner
candidate

The techniques used above depend on analysis of a single ordinary differen-
tial equation, for which analytical solutions are sometimes possible. When
agents behave asymetrically, the game’s evolution is governed by two or-
dinary differential equations, for which an analytical solution is less likely.
Certain trivial cases, such as those when one agent plays in the corner, may,
however, be examined without new techniques. This is done here, first in
the context of two symmetric agents and then in that of asymmetric agents.

C.1 Symmetric agents

Consider the model outlined in Section 2.2. Set agent 2’s play to x2 = 0.
Agent 1’s best response to this, x∗1, is calculated; it is then asked whether
2’s best response to x∗1 is x∗2 = 0. Note that x∗1 (z) = x∗2 (z) = 0 has been
ruled out in Lemma 2.7, above.

Lemma C.1 The unique best response to x2 = 0 in the model of Section
2.2 is x∗1 = x̂b1, defined in equation C.2.

Proof. Agent 1 solves

max
x1≥0

∫ ∞

0
e−δtu (x1, z) dt|ż = x1 − βz, z (0) = z.

This generates, by either Hamilton or Bellman, the differential equation for
the interior portion of the solution

dx1
dz

=
(β + δ) (x1 − ξ) + ν (z − ζ)

x1 − βz
.
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There are singular and general solutions to this; the first are

xa1 = â+ ŝa

(

z − b̂
)

; and

xb1 = â+ ŝb

(

z − b̂
)

; (C.1)

where

â ≡ βb̂ > 0; and

b̂ ≡ (β + δ) ξ + νζ

β (β + δ) + ν
> 0;

{ŝa, ŝb} =
1

2

[

2β + δ ±
√

(2β + δ)2 + 4ν

]

;

such that ŝa > 0 > ŝb.
The general solution to the differential equation is

K =
∣

∣

∣x1 − βb̂− ŝa

(

z − b̂
)∣

∣

∣

γ̂1
∣

∣

∣x1 − βb̂− ŝb

(

z − b̂
)∣

∣

∣

γ̂2

;

where K is a (real) constant of integration and

γ̂1 ≡ δ

2 (ŝb − ŝa)
− 1

2
;

γ̂2 ≡ −δ
2 (ŝb − ŝa)

− 1

2
.

As before, all candidates are eliminated except the analogue of the linear
downward sloping candidate,

x̂b1 = max
{

0, xb1

}

; (C.2)

and those x̂3 strategies for which x̂3 (0) > 0. This eliminates all x̂3 when
x̂a (0) < 0, a condition that always holds because:

x̂a (0) < 0⇒ â− ŝab̂ < 0⇒ (β − ŝa) b̂ < 0⇒ β < ŝa;

where the last implication is derived from b̂ > 0. The result follows.
As agent 1 was maximising a concave objective function with linear

constraints, it is reassuring to find a unique solution.
Now:

Conjecture C.2 Agent 2’s best response to x̂b1 is not x
∗
2 = 0.

This is a conjecture rather than a theorem as inequality C.4, below, has
not yet yielded an analytical result. While numerical methods are unable to
overturn it, this is not a proof.
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Agent 2 plays according to

δV2 (z) = − (x∗2 − ξ)2 − ν (z − ζ)2 + V ′ (z)
(

(β − ŝb)
(

b̂− z
)

+ x∗2

)

; (C.3)

where

x∗2 = max

{

0, ξ +
1

2
V ′2 (z)

}

.

The corner solution requires x∗2 = x∗′2 = 0 and V ′2 (z) ≤ −2ξ. Substituting
these requirements into equation C.3 and differentiating yields

v′ (z) =
(β + δ − ŝb) v (z) + 2ν (z − ζ)

(β − ŝb)
(

b̂− z
) ;

when v (z) ≡ V ′2 (z). This has solution

v (z) = ĉ
(

b̂− z
)−β+δ−ŝb

β−ŝb

+2ν

[

−z
2β + δ − 2ŝb

+
ζ

β + δ − ŝb
− (β + ŝb) b̂

(2β + δ − 2ŝb) (β + δ − ŝb)

]

;

where ĉ is an arbitrary constant of integration. As all ĉ 6= 0 cause v (z) to
become unbounded as z → b̂, a piecewise continuous value function (assump-
tion C1) requires that ĉ = 0. This requirement yields a unique downward
sloping linear strategy. As the corner solution must satisfy v (z) ≤ −2ξ, a
necessary and sufficient condition for it to hold generally is that it hold at
z = 0. It holds, and x∗2 (z) = 0 is a best response, when

ν

[

b̂
β + ŝb

2 (β − ŝb) + δ
− ζ

]

≥ (β + δ − ŝb) ξ. (C.4)

As this inequality has not yielded to analysis, numerical techniques have
been attempted: an example of non-negative parameters that allow it to hold
has yet to be found. The NAG non-linear maximisation routine, e04jbc,
can do no better than cause it to hold with equality; this it does by setting
three of the parameters to zero.1

There are sufficient conditions which guarantee that the conjecture holds.
For example:

Lemma C.3 Agent 2’s best response to x̂b1 is not x
∗
2 (z) = 0 when ξ ≤ βζ.

1The starting values selected were (β, δ, ν, ξ, ζ) =
(

1
115

, 1
100

, 5.4× 10−7, 1.5, 760
)

;
by completion after the fourth iteration these had been updated to (β, δ, ν, ξ, ζ) =
(

2.145× 10−5, 0, 0, 0, 470.84
)

. The variables used in the routine were rescaled (so that
the initial values ranged between .54 and 1.5) to improve conditioning. Subsequent at-
tempts at numerical integration (see Chapter 3) fail for these parameters.
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Proof. As the right hand side of inequality C.4 is positive for positive
parameters, a non-positive left hand side is sufficient to discard x∗2 (z) = 0.
The coefficient of b̂ in the inequality is less than unity so that b̂ ≤ ζ is
sufficient to accomplish this. The result follows by expansion of b̂.

An intuition may be offered for this sufficient condition. In (x1, z) space
it may be seen that b̂ < z < ζ allows agent 2 to deviate to a slightly positive
x2 and receive gains in both production and climate felicity.

C.2 Asymmetric agents

Modify equation 2.1 so that agents’ instantaneous utility functions are

ui (xi, z) = − (xi − ξi)
2 − νi (z − ζi)

2 ;

and their discount rates are δi ∈ <++, i = {1, 2}. The above calculations
may be replicated when agent 2 is assumed to play x2 = 0. Now agent 1’s
best response is x̌1 (z) ≡ βb̌+ šb

(

z − b̌
)

where

b̌ ≡ ν1ζ1 + ξ1 (β + δ1)

ν1 + β (β + δ1)
> 0; and

šb ≡ 1

2
[2β + δ1]−

√

(2β + δ1)
2 + 4ν1.

The solution to agent 2’s Bellman equation when x2 = 0 is

v2 (z)

= 2ν2

[

ζ2
β + δ2 − šb

− z

2β + δ2 − 2šb
− b̌ (β + ŝb1)

(2β + δ2 − 2šb) (β + δ2 − šb)

]

.

This is possible when

ν2

[

b̌
β + šb

2 (β − šb) + δ2
− ζ2

]

≥ (β + δ2 − šb) ξ2; (C.5)

a generalisation of inequality C.4.

Conjecture C.4 Agent 2’s best response to x̌1 is not x
∗
2 = 0.

Again, no analytical results are derived from inequality C.5; numerical
maximisation, as above, can only cause the inequality to hold with equality.
This requires setting four of the parameters to zero.2

2Nine initial calibrations were selected at random from (0, 1) (the rescaling aiding
conditioning). All successful runs converged by the fourth iteration, which set δ2 = ν2 =
ξ2 = 0 in all cases. The other parameter values were not similar.



Chapter 3

Two symmetric agents and
asymmetric play

3.1 Introduction

This chapter extends the model of Chapter 2 by allowing symmetric agents
to play asymmetrically. This extension is unprecedented in the economics
literature, possibly for an obvious reason: it is unclear why agents that are
otherwise symmetric would then differ in their play. The answer given in this
chapter is that the fiction of allowing symmetric agents to differ in their play
simplifies analysis while introducing all the numerical techniques required
for the fully asymmetric analysis of Chapter 4.

A second advantage of working with symmetric agents is that the model
becomes a supermodel of that explored in Chapter 2, allowing results to be
checked against the known case of symmetric play for symmetric agents. To
facilitate comparison, a linear-quadratic game is again used here. These are
known to have a Markov Perfect Equilibrium in linear strategies, even in
the case of asymmetric agents. Uniqueness results for these linear strategies
are presented in [BO99, p.324] and [Loc96]. The techniques developed here,
though, are applicable to more general differential games as well.

Technically, the difference between this chapter and the previous is that
the previous single ordinary differential equation is now replaced by a system
of two ordinary differential equations. As systems of differential equations
are less likely to yield analytical solutions than are single ordinary differ-
ential equations, numerical techniques are adopted here. While lacking the
clear vistas of insight provided by analytical solutions, numerical techniques
allow solution of more complicated problems, such as those with non-linear
equations of motion or asymmetric agents.

Against this advantage, the numerical techniques implemented here are
unable to consider discontinuous strategies. Dockner and Sorger’s model
[DS96] with discontinuous MPE strategies shows that such strategies are

53
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certainly possible and should not be dismissed a priori. Their model differs
from the present, though, in at least two important ways: there is no glut
point in consumption and increases in agents’ controls decrease the state
variable. Both of these features are required for their discontinuous MPE
strategies, suggesting that this chapter’s failure to consider discontinuous
strategies may not be crippling.

Numerical analysis proceeds by integrating over the state space from a
grid of initial conditions. The conditions of Chapter 2 and Appendix A are
then applied to rule out strategies, refining the candidate set.

In general, a grid of initial conditions will not find isolated MPE strate-
gies, such as the linear x̂b from Chapter 2, unless it is adapted to finding
them. In an attempt to find analogues of x̂b, an adapted second grid of
initial conditions is therefore developed, based on the following observation:
x̂b was identified as a singular solution because it and xa, unique among
the solutions to Chapter 2’s differential equation, intersected each other. As
this plants the suspicion that there may be a relationship between MPE and
singularities, the singularity locus is identified for this case of asymmetric
play and the strategies through it calculated. In this case, the locus is based
on a conic section. The relative ease of its analysis explains some of the
appeal of this intermediate chapter: in the case of asymmetric agents, the
locus is much more complicated and intuition more difficult.

Section 3.2 presents the new model. Section 3.3 contains definitions and
conditions required to test whether a solution to the differential equation
system is an MPE. Section 3.4 examines the singularity locus while Section
3.5 discusses the coding and execution. Section 3.6 presents the results of
the numerical analysis and Section 3.7 concludes.

3.2 Asymmetric play in the linear-quadratic model

Draw upon the linear-quadratic model of Chapter 2 to consider symmetric
agents that may play asymmetrically. As then, differential equations are
derived from Bellman’s equation.

Again use the linear equation of motion 2.3, reproduced here:

ż (t) = x1 (z) + x2 (z)− βz (t) .

Let the instantaneous utility functions be the quadratic loss functions

u (xi, z) = − (xi − ξ)2 − ν (z − ζ)2 ; (3.1)

The Bellman equations are then of the form

δVi (z) = max
xi≥0

{

− (xi − ξ)2 − ν (z − ζ)2 + V ′i (z) (x1 + x2 − βz)
}

, i = 1, 2;

(3.2)
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when the value function is piecewise C1; δ is the discount rate.

The first order conditions of the Bellman are

x∗i = max

{

0, ξ +
V ′i (z)

2

}

, i = 1, 2. (3.3)

As the objective functions are concave, x∗i is unique and a maximiser; sub-
stitute it into equation 3.2 for

δVi (z) = − (x∗i − ξ)2 − ν (z − ζ)2 + V ′i (z) (x
∗
i + x−i − βz) , i = 1, 2. (3.4)

Although x∗i is unique, solutions to differential equation 3.4 will not be.
Therefore, solutions to differential equation 3.4 are not generally solutions
to maximisation problem 3.2. Denote a solution to equation 3.4 by Wi ();
call this a candidate value function; let Wi be the family of solutions to
equation 3.4. Therefore Vi ∈ Wi.

When the candidate value function is twice differentiable, differentiating
differential equation 3.4 with respect to z yields

δW ′
i (z) = −2 (x∗i − ξ)

dx∗i
dz
− 2ν (z − ζ) +W ′′

i (z) (x∗1 + x∗2 − βz)

+W ′
i (z)

(

dx∗1
dz

+
dx∗2
dz
− β

)

, i = 1, 2.

The following assumes this second differentiation to be valid; points at which
it is not will be identified as the scenarios defined below are explored nu-
merically.

Defining wi ≡W ′
i and tidying produces

w′i (z) (x
∗
1 + x∗2 − βz)− 2x∗′i (x∗i − ξ)

= (β + δ − x∗′1 − x∗′2 )wi (z) + 2ν (z − ζ) , i = 1, 2.
(3.5)

As either x∗i > 0, the interior of the action space, or x∗i = 0, the action space’s
corner, there are three possible scenarios for each z ∈ Z: both agents play
in the interior, both play on the corner, or one plays in the interior and the
other on the corner. These are now explored below.

3.2.1 Both agents interior

In this case, x∗i > 0∀i = 1, 2 ⇒ x∗i = ξ + 1
2wi (z) , x

∗′
i = 1

2w
′
i and equations

3.5 become the differential equation system

[

g 1
2w1

1
2w2 g

] [

w′1
w′2

]

=

[

(β + δ)w1 + 2ν (z − ζ)
(β + δ)w2 + 2ν (z − ζ)

]

; (3.6)

where

g ≡ 1

2
(w1 + w2)− βz + 2ξ; (3.7)
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so that ż = g (w, z). A special case of this system is

w′ (z) =
(β + δ)w + 2ν (z − ζ)

3
2w − βz + 2ξ

; (3.8)

the single differential equation of symmetric play (w ≡ w1 = w2) analysed
in Chapter 2. A zero in the denominator of this differential equation implies
a singular coefficient matrix on the left hand side of system 3.6.

3.2.2 One agent interior, the other cornered

Assume without loss of generality that agent i has cornered. Now x∗j >

0, x∗i = 0 ⇒ x∗j = ξ + 1
2wj (z) , x

∗′
j = 1

2w
′
j ;x

∗′
i = 0 so that equations 3.5

produce the differential equation system
[

h 0
1
2wi h

] [

w′j
w′i

]

=

[

(β + δ)wj + 2ν (z − ζ)
(β + δ)wi + 2ν (z − ζ)

]

; (3.9)

where

h ≡ 1

2
wj − βz + ξ; (3.10)

so that ż = h (w, z).
As the first equation in system 3.9 is independent of wi and of similar

form to equation 3.8 it is similarly solvable. This yields the linear solutions

wj,c = c+ sc (z − d) ;
wj,d = c+ sd (z − d) ;

(3.11)

where

c ≡ 2ν
βζ − ξ

β (βδ) + ν
; (3.12)

d ≡ ξ (β + δ) + νζ

β (β + δ) + ν
> 0; (3.13)

{sc, sd} ≡ δ ±
√

δ2 + 4ν, sc > 0 > sd.

The family of interior solutions is therefore

K = |wj − c− sc (z − d)|γ1 |wj − c− sd (z − d)|γ2 ;

where

γ1 = −2β − sc
sd − sc

;

γ2 =
2β − sd
sd − sc

< 0.

The exponents sum to −1 and the linear solutions to equations 3.11 corre-
spond to the special case of K = 0.

Solving the first equation in system 3.9 does not seem to allow an ana-
lytical solution for wi (z).
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3.2.3 Both agents cornered

When both agents play on the corner x∗i = 0∀i = 1, 2 ⇒ x∗′i = 0 and
equations 3.5 produce the differential equation system

w′i = −
(β + δ)wi + 2ν (z − ζ)

βz
, i = 1, 2;

whose solution is

wi (z) = Kiz
−β+δ

β + 2ν

(

ζ

β + δ
− z

2β + δ

)

, i = 1, 2; (3.14)

where Ki is a constant of integration.
The following lemma provides a sufficient condition for the system to

remain in the cornered scenario once reaching it:

Lemma 3.1 Let z̃ be the least z satisfying xi (z) = 0 and ẑ > z̃ that sat-
isfying xj (z) = 0. A sufficient condition for xi (z) = xj (z) = 0∀z > ẑ is
that

wi (ẑ) ≥
2ν

β + δ
(ζ − ẑ) .

Proof. At ẑ, wi (ẑ) ≤ wj (ẑ). By equation 3.14, then, Ki ≤ Kj . For
the system to remain cornered it is sufficient that w′i (z) , w

′
j (z) ≤ 0∀z > ẑ.

Differentiation of equation 3.14 converts this requirement into

Kj ≥ Ki ≥ −
2βν

(β + δ) (2β + δ)
z

2β+δ
β ≤ 0, ∀z > ẑ.

The inequality in Kj is thus automatic if that in Ki holds. That in Ki holds
if it holds at z = ẑ as Ki is fixed but the RHS decreases in z. Isolating Ki

(as determined at ẑ) in equation 3.14 and substituting into the inequality
produces

[

wi (ẑ)− 2ν

(

ζ

β + δ
− ẑ

2β + δ

)]

ẑ
β+δ
β ≥ − 2βν

(β + δ) (2β + δ)
ẑ

2β+δ
β .

Some manipulation produces the result.

3.3 Conditions for MPE

As noted above, solutions to ordinary differential equation systems 3.6, 3.9
and 3.14 are generally non-unique and generally do not support MPE. This
section therefore establishes conditions for the rejection or acceptance of
a particular solution to the differential equations. The latter conditions
translate directly from Appendix A; the former are based on those seen in
Chapter 2.

First, some terminology is defined.
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Definition 3.2 A system of differential equations is

A (s) s′= f (s) ; (3.15)

where s is an n-vector dependent on its nth element, the independent state

variable; A (·) is an n×n matrix, s′≡
[

ds1
dsn

, . . . , dsn
dsn

]′
the n-vector of deriva-

tives and f (·) is an n-vector.

As the elements of s may be discontinuous, a system of differential equa-
tions may represent multiple regimes (i.e. systems 3.6, 3.9 and 3.14). The
elements of A and f may not be continuous at the points of transition be-
tween regimes.

In what follows two interpretations of s will be used. In one,

s =(w1 (z) , w2 (z) , z)
′ ;

while, in the second,

s =(w1 (z (t)) , w2 (z (t)) , z (t) , t)
′ .

This latter, more complicated interpretation is used in Section 3.4 as systems
3.6, 3.9 and 3.14 are autonomous in t but not in z. Autonomy in t allows
Taylor expansion about t0 = 0, simplifying many equations without loss of
generality.

Definition 3.3 A path, s, is a solution to system 3.15.

Definition 3.4 The point σ =(σ1, . . . , σn) lies on path s if s = σ for some
sn in the state’s domain.

Three types of points are of interest here. The first are points at which
a path ceases to be a function by ‘doubling back’ through the domain; these
are called non-invertible. Singular points have more than one path through
them. Regular points are the rest:

Definition 3.5 The point σ is

1. a non-invertible point of system 3.15 if it lies on a path s such that:

(a)
∂si
∂sn

∣

∣

∣

∣

σ

=∞

for some i; and

(b) ∃δ > 0 s.t., ∀σn + ε or ∀σn − ε, path s is not defined, δ > ε > 0.

2. a singular point of system 3.15 if it lies on at least two distinct paths,
s and ŝ;
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z

w (z)

Figure 3.1: A simple example of a singularity at the origin: w dw
dz

= z.

3. a regular point of system 3.15 otherwise.

These definitions are illustrated in the example plotted in Figure 3.1. If
z is the state variable, the non-invertible points are all (w = 0, z 6= 0), the
singular point (w = 0, z = 0), and the regular points all (w 6= 0, z).

Refine the non-invertible points further:

Definition 3.6 A point σ is a truly non-invertible point of system 3.15 if
it is non-invertible and if det (A (σ)) = 0. The path on which σ lies is then
truly non-invertible as well.

Definition 3.7 A point σ is a quasi-non-invertible point of system 3.15
if it is non-invertible but not truly so. The path on which σ lies is then
quasi-non-invertible as well.

In the example in Figure 3.1 all the non-invertible points are truly so.
Quasi-non-invertible points are kinks; the examples of these seen to date
mark passage between regimes.

Definition 3.8 A candidate MPE strategy is a path s where:

1. w =(s1, s2)
′ and z = s3;

2. w (z) is a function mapping from Z to <2;

3. A and f are defined according to systems 3.6, 3.9 and 3.14 as appro-
priate.
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3.3.1 Sufficient conditions to disqualify candidate strategies

Lemma 3.9 Candidate MPE strategies containing non-invertible points can-
not be considered as MPE strategies.

This follows directly from the requirement that a candidate strategy be
a function and that it be defined for the whole domain, Z. Otherwise, other
agents cannot otherwise form conjectures about an agent’s play under all
possible circumstances and, therefore, cannot form a best response.

Lemma 3.10 Candidate MPE strategies that set Wi (z) > 0 for any z ∈ Z
cannot be considered as MPE strategies.

Proof. As payoff function 3.1 is bounded above by zero for all z, so is
the value function, Vi (). Any candidate exceeding this cannot be a value
function.

For reasons that will become apparent in the numerical analysis, it is
also important to eliminate strategy pairs for which (x1 (0) , x2 (0)) = 0.

Lemma 3.11 Strategy pairs (x1 () , x2 ()) setting (x1 (0) , x2 (0)) = 0 cannot
be considered as MPE strategies.

This generalises Lemma 2.7 to situations in which x1 and x2 can differ.
Proof. Assume that the x∗i , i ∈ {1, 2} that maximises the RHS of Bell-

man equation 3.2 is zero at z = 0. The ensuing differential equation is
then

W ′
i (z) = −

δWi (z) + ξ2 + ν (z − ζ)2

βz
; (3.16)

with solution

Wi (z) =
Ci

z
δ
β

− ν

2β + δ
z2 +

2νζ

β + δ
z − ξ2 + νζ2

δ
; (3.17)

where Ci is a constant of integration. The proof proceeds to rule out all
possible values of Ci.

First consider Ci > 0. In this case, Wi (0) =∞, violating Lemma 3.10.
Now consider Ci < 0. For x∗i = 0 it must be that W ′

i (z) ≤ −2ξ which,
with equation 3.16, yields

δWi (z) + ξ2 + ν (z − ζ)2 ≥ 2βξz.

Replacing the Wi (z) term with that in equation 3.17 allows manipulation
for

2βν

2β + δ
z

2β+δ
β + δCi ≥ 2β

(

ξ +
νζ

β + δ

)

z
β+δ
β .

This inequality fails at z = 0 for Ci < 0, eliminating this case as well.
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Consider, finally, Ci = 0. Differentiating equation 3.17 with respect to z
and requiring that W ′

i (z) ≤ −2ξ produces, with some manipulation,

(β + δ) ξ + νζ

β + δ
≤ ν

2β + δ
z;

which also fails at z = 0.

3.3.2 Necessary and sufficient conditions for MPE

Until now discussion has focussed on conditions sufficient to disqualify paths
from consideration as MPE strategies. The conditions for doing the reverse
have already been presented in Appendix A to Chapter 2.

3.4 Singularities

Singularities are generally of interest in understanding dynamic systems. In
the present case, there is a singularity in the solution to symmetric equation
3.8. Furthermore, the unique symmetric linear MPE passes through it. As
the numerical numerical techniques used here are based on grids of initial
conditions, they tend to find regions rather than isolated paths like those
through the singularity. Direct calculation of the singularity locus therefore
allows points on it to be used as a second grid of initial conditions. Integra-
tion from these then allows exploration of the isolated paths passing through
the locus.

Sufficient conditions for a locus of points through which two paths pass
are first developed. These conditions are then applied to the systems of
differential equations 3.6 and 3.9. The first system is found to have a sin-
gularity locus based on a conic section, although with points removed. The
second does not have a singularity locus. Singularities are not sought in
system 3.14 as its explicit solution may be seen not to yield them.

3.4.1 Theory

The following theorem provides sufficient conditions for the existence of a
2-singularity, defined according to:

Definition 3.12 An m-singularity is a singularity lying on exactly m ≥ 2
distinct paths.

This section uses the following notation and assumptions:

1. let s = s (t) and rewrite the prototypical differential equation 3.15 as

A (s) ṡ = f (s) ; (3.18)
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where derivatives of s (t) with respect to t are ṡ, s̈,
...
s and so on. There-

fore the sn of equation 3.15 becomes t here. Definition 3.5, defining
non-invertible, singular and regular points, is not modified.

2. denote singular points by σ.

3. set t = 0 at σ; as the system is autonomous in t no generality is lost.

4. define

a
(k)
ij ≡ ∂

∂sk
aij |σ and f

(k)
i ≡ ∂fi

∂sk
|σ;

where [aij ] = A and [fi] = f . (As the specific aij and fi explored here
are members of C∞ this differentiability assumption is not restrictive.)

5. when rank (A (s)) < n let the vector q 6= 0 be a linear combination of
the columns of A so that A (s) ·q = 0. Under the same circumstances,
let c 6= 0 be a linear combination of rows so that c ·A (s) = 0. When
rank (A (s)) = n−1, c and q are unique up to a scalar multiple; when
A is symmetric as well let c′= q.

While the following is initially general one might bear in mind the present
problem in which s =(w1 (z (t)) , w2 (z (t)) , z (t) , t).

Then:

Theorem 3.13 Given system 3.18, in which aij , fi ∈ C1, sufficient condi-
tions for the point σ to be a 2-singularity are:

1. (non-invertibility) A (σ) has rank n− 1;

2. (spanning) f (σ) = A (σ) · r for some n -vector r; and

3. (roots) the quadratic equation

0 = λ2
[

∑

i,j,k a
(k)
ij ciqjqk

]

+λ
∑

i ci

[

2
∑

j,k a
(k)
ij rjqk −

∑

k f
(k)
i qk

]

+
∑

i ci

[

∑

j,k a
(k)
ij rjrk −

∑

k f
(k)
i rk

]

.

(3.19)

has exactly two distinct real roots in λ given the vector r from the
spanning condition.

The intuition behind these conditions is illustrated by the earlier exam-
ple in Figure 3.1, w dw

dz
= z.The non-invertibility condition (w = 0 in the

diagram) imposes a barrier, not to paths, but to functions: paths crossing
it generally cease to be functions. When spanning holds as well as non-
invertibility, at (w, z) = (0, 0) in the diagram, one may imagine a slit in the
barrier through which crossing paths remain functions. The roots condition
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then ensures that the crossing paths are distinct. It may be seen that the
roots of equation 3.19 are homogeneous of degree zero in c and homogeneous
of degree -1 in q; they are not homogeneous in r.

The theorem is proven by means of two lemmata.

Lemma 3.14 Paths through the point σ and satisfying the conditions of
Theorem 3.13 have one of two slopes.

Proof. At σ the ith equation of system 3.18 is

n
∑

j=1

aij σ̇j = fi. (3.20)

As A (σ) is singular, this fails to determine σ̇. Therefore take advantage of
t0 = 0 and Taylor expand the elements of equation 3.20 for

∑n
j=1

{

aij +
∑

k a
(k)
ij σ̇kt+

1
2

[

∑

k,l

∂a
(k)
ij

∂sl
σ̇kσ̇l + a

(k)
ij σ̈k

]

t2 +O
(

t3
)

}

×
{

σ̇j + σ̈jt+
1
2

...
σjt

2 +O
(

t3
)}

=

{

fi +
∑n

k=1 f
(k)
i σ̇kt+

1
2

[

∑

k,l
∂f

(j)
i

∂sk
σ̇kσ̇l +

∑

j f
(j)
i σ̈j

]

t2 +O
(

t3
)

}

.

(3.21)
Equality of the coefficients of the powers of t therefore produces an infinite
number of equations. That in t0 is simply equation 3.20. As A (σ) has rank
n− 1, σ̇j is non-unique; define it to be

σ̇j = rj + λqj ; (3.22)

where λ is a scalar and qj is the jth component of q. At this point any λ
satisfies equation 3.22.

By equality of the coefficients of the t1 terms

∑

j

aij σ̈j = −
∑

j,k

a
(k)
ij σ̇j σ̇k +

∑

k

f
(k)
i σ̇k. (3.23)

As A (σ) is singular, premultiplication by c sets the LHS term in equation
3.23 to zero, yielding

∑

i,j,k

cia
(k)
ij σ̇j σ̇k =

∑

i,k

cif
(k)
i σ̇k.

Substitute the non-unique σ̇j = rj + λqj into this expression for

∑

i,j,k

cia
(k)
ij (rj + λqj) (rk + λqk) =

∑

i,k

cif
(k)
i (rk + λqk) ; (3.24)

a quadratic in λ. As λ’s premultipliers are non-singular, this reduces the
non-unique σ̇j to no more than two distinct values. The third condition of
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Theorem 3.13, on equation 3.24 (= equation 3.19), then ensures that σ̇j has
two distinct, real values.

As singularity of A (σ) prevented derivation of σ̇ from equation 3.20, so
did it prevent derivation of σ̈ from equation 3.23. The next lemma therefore
applies the technique used above to derive σ̈.

Lemma 3.15 A path through a point σ, satisfying the conditions of Theo-
rem 3.13, is uniquely identified by its slope at σ.

Proof. From equation 3.23, singularity of A (σ) allows

σ̈j = pj + µqj ;

where µ is a scalar and qj is again the jth component of q. Equation of the
coefficients of the t2 terms in the Taylor expansion of equation 3.21 yields

∑

j

aij
...
σj =

∑

j,k
∂f

(j)
i

∂sk
σ̇j σ̇k +

∑

j f
(j)
i σ̈j −

∑

j,k,l

∂a
(k)
ij

∂sl
σ̇j σ̇kσ̇l

−∑j,k a
(k)
ij σ̇j σ̈k − 2

∑

j,k a
(k)
ij σ̇kσ̈j .

(3.25)

Premultiply by c as before for

0 =
∑

i,j,k ci
∂f

(j)
i

∂sk
σ̇j σ̇k +

∑

i,j cif
(j)
i (pj + µqj)−

∑

i,j,k,l ci
∂a

(k)
ij

∂sl
σ̇j σ̇kσ̇l

−
∑

i,j,k cia
(k)
ij (pk + µqk) σ̇j − 2

∑

i,j,k cia
(k)
ij σ̇k (pj + µqj) .

(3.26)
As this is linear in µ and as µ’s premultipliers are non-singular, there is a
unique µ satisfying it. Hence, given σ̇j , σ̈j is unique.

The coefficients of the higher order terms, tn, n > 2, are obtained by fur-
ther differentiating equation 3.25. As this reveals

...
σj to be a linear function

of the σ̈ terms, higher order derivatives,
dn+1σj
dtn+1 , are also linear in

dnσj
dtn

, n > 2.

Thus, given any set of lower order derivatives,
{

σ̇j , σ̈j , . . . ,
dnσj
dtn

}

,
dn+1σj
dtn+1 is

unique.
Theorem 3.13 avoided discussion of necessary conditions. This is a prag-

matic decision as failures of, for example, the rank condition of Theorem
3.13 become quite complicated. Imagine that rank (A (σ)) = n − 2. There
are now independent n-vectors c1 and c2 such that c1 ·A (σ) = c2 ·A (σ) = 0.
The logic above, which differentiates the general system of differential equa-
tions 3.18, produces

c1
(

A′ṡ+As̈
)

= c1f
′; and

c2
(

A′ṡ+As̈
)

= c2f
′;

or, by the definition of the c vectors,

c1A
′ṡ = c1f

′; and

c2A
′ṡ = c2f

′.
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If

σ̇ = rj + λ1q1,j + λ2q2,j ;

where A (σ) · q1 = A (σ) · q2 = 0 and λ1 and λ2 are constants, then each
of these defines a conic in λ1 and λ2. As both must hold, the acceptable
values of λ1 and λ2 are those representing the intersection of the conics. As
some of these intersections may be in the complex hyperplane, this chapter
avoids further exploration of these issues.

3.4.2 Singularities in system 3.6

The preceding allows more careful analysis of the singularities of the system
of differential equations 3.6. This section is concerned with the examination
of 2-singularities. It first examines the sets of points satisfying each of
the conditions of Theorem 3.13 and then assembles them to describe the
2-singularity locus. It will be seen that the 2-singularity locus is a conic
section, with some points removed. Some of these removed points are regular
rather than singular; others allow the passage of no real paths.

The non-invertibility and spanning conditions

Lemma 3.16 The points of system 3.6 satisfying the non-invertibility con-
dition of Theorem 3.13 define a cone.

Proof. In system 3.6, the non-invertibility condition of Theorem 3.13
becomes

g2 =
1

4
w1w2. (3.27)

This surface is the union of the generating lines

g =
1

2
pw1 =

1

2

1

p
w2; (3.28)

parameterised by the finite p 6= 0. The lines in this family are non-parallel,

pass through the common (w1, w2, z) =
(

0, 0, 2ξ
β

)

and hence define a cone.

Lemma 3.17 The points of system 3.6 satisfying the non-invertibility and
spanning conditions of Theorem 3.13 form a conic section and a line.

Proof. By condition 2 of Theorem 3.13, the spanning condition is de-
fined at σ. Here A is non-invertible and, by spanning, its columns are
proportional to each other, allowing system 3.6 to be written as

ρ

[

2g
w2

]

= (β + δ)

[

w1

w2

]

+ 2ν (z − ζ)

[

1
1

]

;
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where ρ is some scalar. Solving ρ out of the two equations yields

(β + δ) (w1w2 − 2gw2) + 2ν (z − ζ) (w2 − 2g) = 0.

With equation 3.27 this produces

(β + δ)
(

4g2 − 2gw2

)

+ 2ν (z − ζ) (w2 − 2g) = 0;

(2g − w2) [g (β + δ)− ν (z − ζ)] = 0. (3.29)

Each of the terms in equation 3.29 defines a plane. The intersection of the
first and the non-invertibility cone of equation 3.27 is the degenerate conic
w1 = w2 = 2 (βz − 2ξ), a line. As the second element is the non-degenerate
intersection of a plane and the cone, it is a conic section.

Lemma 3.18 Lemma 3.17’s conic section has two branches in (w1, w2, z)
space when

β [β (β + δ) + 2ν] (β + δ) > 3ν2; (3.30)

and one otherwise.

Proof. The axis of Lemma 3.17’s cone lies on the w1 = w2 plane. As
the conic intersection of the cone with Lemma 3.17’s plane is symmetric in
w1 and w2, whatever branches it has must cross the w ≡ w1 = w2 plane.
On this symmetric plane there are three lines relevant to this proof: the
generating lines

z =
1

β

(

3

2
w + 2ξ

)

⇔ p = −1;

z =
1

β

(

1

2
w + 2ξ

)

⇔ p = 1;

and the spanning line when A is non-invertible:

z =
w (β + δ) + 2ξ (β + δ) + νζ

β (β + δ) + ν
. (3.31)

When the spanning line intersects both generating lines in the same half

cone (with vertex at (w, z) =
(

0, 2ξ
β

)

) the conic section has one branch;

otherwise it has two. The intersections occur at

(w, z) =

(

2ν (βζ − 2ξ)

β (β + δ) + 3ν
,
2ξ (β + δ) + 3νζ

β (β + δ) + 3ν

)

; (3.32)

(w, z) =

(−2ν (βζ − 2ξ)

β (β + δ)− ν
,
2ξ (β + δ)− νζ

β (β + δ)− ν

)

. (3.33)

They will both be in the same half cone when the product of the intersections
in w is positive:

(

2ν (βζ − 2ξ)

β (β + δ) + 3ν

)(−2ν (βζ − 2ξ)

β (β + δ)− ν

)

> 0.
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As the numerator of this product is always negative this simplifies to

(β (β + δ) + 3ν) (β (β + δ)− ν) < 0;

or
β [β (β + δ) + 2ν] (β + δ) < 3ν2.

Otherwise the intersections are in opposite half cones.

The roots condition

The roots condition of Theorem 3.13 fails in a simple and specific way,
as shown in Lemma 3.19. As failure occurs on the conic section defined
by Lemma 3.17, the locus of points of that conic satisfying the conditions
of Theorem 3.13 is punctured. The subsequent lemmata then show more
general ways in which the roots condition fails.

A symmetric line that satisfies spanning and non-invertibility does so by
setting p, defined in equation 3.28 to 1 so that 2g = w2 = w1. Neverthe-
less, this line through the symmetric plane is not a solution to differential
equation 3.8, the symmetric special case of system 3.6:

Lemma 3.19 The line defined in Lemma 3.17 generally fails to satisfy con-
dition 3 of Theorem 3.13.

The argument used in the proof is a special case of that in Theorem
3.13. Instead of expanding the general system 3.18, system 3.6 specifically
is expanded. The analogue of quadratic equation 3.19 is derived by dif-
ferentiating twice (the coefficients of t1) and premultiplying by the vector
c.

Proof. Differentiating system 3.6 with respect to z yields the specific
form of equation 3.23,

[

g 1
2w1

1
2w2 g

] [

w′′1
w′′2

]

+

[

g′ 1
2w

′
1

1
2w

′
2 g′

] [

w′1
w′2

]

= (β + δ)

[

w′1
w′2

]

+ 2ν

[

1
1

]

;

where g′ = 1
2 (w

′
1 + w′2) − β. When g = 1

2w ≡ 1
2w1 = 1

2w2, thus satisfying
equations 3.27 and 3.29, system 3.6 becomes

w′1 + w′2 =
2

w
[(β + δ)w + 2ν (z − ζ)] . (3.34)

By substituting out the g′ terms in the system of second derivatives this
relationship and that between g and w simplify the system to

[

1
2w

1
2w

1
2w

1
2w

] [

w′′1
w′′2

]

+

[

δ + 2ν z−ζ
w

1
2w

′
1

1
2w

′
2 δ + 2ν z−ζ

w

] [

w′1
w′2

]

= (β + δ)

[

w′1
w′2

]

+ 2ν

[

1
1

]

.
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The premultiplying vector (c1, c2)= (1,−1) cancels the second derivatives to
produce

(

δ + 2ν
z − ζ

w
− 1

2
w′2

)

w′1 −
(

δ + 2ν
z − ζ

w
− 1

2
w′1

)

w′2 = (β + δ)
(

w′1 − w′2
)

;

or
(

2ν
z − ζ

w
− β

)

(

w′1 − w′2
)

= 0; (3.35)

the specific form of quadratic condition 3.19. With the substitution w′i =
ri + λqi and q = c′, equation 3.35 becomes

(

2ν
z − ζ

w
− β

)

(r1 − r2 + 2λ) = 0;

which does not generally have two real, distinct roots in λ.

The preceding lemma dealt with one of two possible cases of symmetric
play satisfying non-invertibility, that corresponding to the generating line
with parameter p = 1. A similar process confirms that a point on the
p = −1 line, the other case, does satisfy the conditions of Theorem 3.13;
this produces the 2-singularity at the intersection of the linear solutions to
the symmetric differential equation 3.8, as illustrated in Figure 2.2.

More generally, there are two ways in which the quadratic equation 3.19
will fail to have distinct, real roots. The next two lemmata examine these
possibilities. First, the coefficient of the square term may be zero:

Lemma 3.20 In the case of system 3.6 the coefficient of λ2 in quadratic
equation 3.19 is zero iff p = 1.

Proof. At non-invertibility, the relationship g = 1
2pw1 = 1

2
1
p
w2 allows

system 3.6 to be written

g

[

1 1
p

p 1

] [

r1
r2

]

= 2

[

(β + δ) 1
p
g + ν (z − ζ)

(β + δ) pg + ν (z − ζ)

]

. (3.36)

Vectors that set A · q = 0 and c ·A = 0 are

q =(1,−p, 0)′ ;

and

c =

(

1,−1

p
, 0

)

.

The requirement from equation 3.19 that

∑

i,j,k

a
(k)
ij ciqjqk 6= 0;
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is expanded to

∑

i

ci





∑

j

qj
∑

k

a
(k)
ij qk





=





2
∑

j

qj

(

a
(1)
1j − pa

(2)
1j

)



− 1

p





2
∑

j

qj

(

a
(1)
2j − pa

(2)
2j

)





=
[(

a
(1)
11 − pa

(2)
11

)

− p
(

a
(1)
12 − pa

(2)
12

)]

−1

p

[(

a
(1)
21 − pa

(2)
21

)

− p
(

a
(1)
22 − pa

(2)
22

)]

=
1

2
− p− 1

p

[

1

2
p2 − p

]

=
3

2
− 3

2
p =

3

2
(1− p) 6= 0

⇔ p 6= 1.

Therefore, given the c and q used here, the coefficient of λ2 in this
case is 3

2 (1− p). The p = 1 case had already been discarded as a possible
singularity in Lemma 3.19.

The second way in which the quadratic equation may fail to have distinct,
real roots is by having a negative discriminant:

Lemma 3.21 Quadratic equation 3.19 has a positive discriminant in the
case of system 3.6 iff

[β + δ]2 p4 −
[

β2 + 3ν + βδ
]

p3 −
[

2βδ + δ2 − 6 ν
]

p2

−
[

β2 + 3ν + βδ
]

p+ [β + δ]2 > 0;

(3.37)

when p 6= 1.

Proof. See Appendix D.
It is not clear how to interpret the failure of condition 3.37: no real paths

pass through the points concerned.
As the truth of inequality 3.37 depends on the model’s calibration, there

are cases when it holds for all p:

Lemma 3.22 Inequality 3.37 holds for all p iff

8ν > 3β2 + 8βδ + 4δ2 + ν
2β (β + δ) + 3ν

(β + δ)2
. (3.38)

Proof. As inequality 3.37 holds for p = 0 only consider those p 6= 0.
Divide inequality 3.37 by p2 6= 0 for

(β + δ)2
(

p2 +
1

p2

)

−
(

β2 + 3ν + βδ
)

(

p+
1

p

)

−
(

2βδ + δ2 − 6ν
)

> 0;
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or

(β + δ)2
(

(

p+ 1
p

)2
− 2

)

−
(

β2 + 3ν + βδ
)

(

p+ 1
p

)

−
(

2βδ + δ2 − 6ν
)

> 0.

Define q ≡ p+ 1
p
to reduce this to the quadratic

(β + δ)2 q2 −
(

β2 + 3ν + βδ
)

q −
(

2βδ + δ2 − 6ν
)

− 2 (β + δ)2 > 0. (3.39)

As the coefficient of q2 is positive its stationary points are minima. The
stationary points satisfy

q∗ =
β (β + δ) + 3ν

2 (β + δ)2
.

Substituting this into inequality 3.39 yields

− [β (β + δ) + 3ν]2

4 (β + δ)2
−
(

2βδ + δ2 − 6ν
)

− 2 (β + δ)2 > 0;

which may be manipulated to produce condition 3.38. When this condition
holds, the inequality has no real roots.

The 2-singularity locus

The various statements made above may now be assembled into:

Theorem 3.23 The 2-singularity locus of system 3.6 coincides with the
conic section defined in Lemma 3.17 except when:

1. p = 1 (as per Lemma 3.19); or

2. p is such that inequality 3.37 fails.

While the conic section underlying the 2-singularity locus may have one
or two branches, the locus never ceases to exist as a result of the auxiliary
condition, wi ≥ −2ξ, i = 1, 2:

Lemma 3.24 The auxiliary condition wi ≥ −2ξ, i = 1, 2 cannot remove the
entire 2-singularity locus.

Proof.
Consider the intersection of the non-invertibility line with parameter

p = −1 and the objects satisfying non-invertibility and spanning in equation
3.29; their intersection satisfies the conditions of Theorem 3.13. This point,
identified in equation 3.32, always satisfies (w, z) > (−2ξ, 0). Therefore, this
part of the planar conic is always a 2-singularity.

It may also be of interest to know when the 2-singularity locus has two
branches:



3.4. Singularities 71

Lemma 3.25 When condition 3.38 holds, the 2-singularity locus in system
3.6 has two branches iff

ν (βζ − 2ξ)

β (β + δ)− ν
< ξ. (3.40)

and inequality 3.30 holds.

Proof. Inequality 3.30 in Lemma 3.18 provided a necessary and suf-
ficient condition for the conic to have two branches. The non-invertibility
generating line with parameter p = 1 intersects the spanning line in equation
3.31 at w1 = w2 > −2ξ iff inequality 3.40 holds. As, from Lemma 3.24, the
generating line with parameter p = −1 always intersects the spanning line
at a w1 = w2 > −2ξ, the proof follows.

As a concluding note, cases in which rank (A (σ)) < n−2 have not been
examined here. Clearly, cases of n − d non-invertibility, where d > 2, are
impossible in system 3.6 as n = 2. The d = 2 case is possible but requires
that A (σ) = 0, hence w1 = w2 = g = 0 ⇒ z = 2ξ

β
; these conditions are

only satisfied at (w,z) =
(

0, 2ξ
β

)

, the apex of the non-invertibility cone.

Spanning would then require that z = ζ so that singularities in this case
would require the parameter restriction 2ξ = βζ. Given the non-genericity
of this restriction, and the costs of presenting the more general theory to
address this case, it is not examined here.

3.4.3 Singularities in system 3.9

As wi ≤ −2ξ, i = 1, 2 the minimum rank (A (σ)) in system 3.9 is n − 1.
The worst case, from the point of view of multiple solutions, is that when
rank (A (σ)) = n− 1 but Theorem 3.13’s spanning condition holds (so that
there is a solution) along with its roots condition (so that there are two
solutions). Therefore the only singularities that need to be considered here
are 2-singularities.

Theorem 3.26 There are no 2-singularities in system 3.9.

Proof. Non-invertibility requires that h = 0, so that wj = 2 (βz − ξ).
When h = 0 the system is

[

0 0
1
2wi 0

] [

w′j
w′i

]

=

[

(β + δ)wj + 2ν (z − ζ)
(β + δ)wi + 2ν (z − ζ)

]

.

If spanning occurs, the first equation produces

wj = −2ν
z − ζ

β + δ
;

which, with the above implication of h = 0 for wj and z, allows

(wj , z) = (c, d) ;
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where c and d are defined in equations 3.12 and 3.13. Spanning then requires
that the second equation satisfy

1

2
wiw

′
j = (β + δ)wi + 2ν (z − ζ) ;

or, with the appropriate substitutions,

w′j = 2 (β + δ)

[

1 +
1

wi

2ν (ξ − βζ)

β (β + δ) + ν

]

.

As wi ≤ −2ξ by construction of the scenario, w′j is unique.

3.5 Coding and execution

This section describes how the insights developed so far are adapted to nu-
merical integration. It first mentions the general technique used for solving
the differential equations and then discusses how the initial conditions are
derived. The bulk of this section, though, is concerned with a description
of the implementation of the various conditions for disqualifying candidate
paths developed in Section 3.3. Finally, issues relating to the precision of
numerical calculations are addressed.

3.5.1 Solution method

The solution to a differential game is a tuple of value or strategy functions.
There is a growing literature on the application of projection methods to
functional problems; see Judd [Jud98] for a proper presentation. Instead of
solving the infinite dimensional functional problem, these methods solve a
finite dimensional approximation. This, then, merely requires determination
of a finite number of coefficients. In solving problems involving differential
equations, such as optimal growth problems, some method is needed to select
the solution to the original problem from those to the differential equations.
This may be done by, in the optimal growth example, forcing the solution
path to pass through the steady state. The literature suggests that these
techniques might be quite rapid [Jud92].

In the present problem the solution paths must satisfy transversality
conditions and it is less clear how to select the solution path from the can-
didates. Consequently, the techniques used here are more traditional finite
difference methods. Coding is performed in C for speed; the code is available
upon request from the author.

3.5.2 Initial conditions

The finite difference method is implemented by integrating forward in z from
a grid of initial conditions, (w1 (0) , w2 (0)). As the agents are symmetrical,
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only half of the grid is explored. The upper and lower bounds of the initial
conditions grid are somewhat arbitrarily set. The lower bound is usually set
at wi (0) = −3ξ, i = 1, 2 as those paths starting from wi (0) ≤ −2ξ, i = 1, 2
imply x (0) = 0 and are discarded under Lemma 3.11. Similarly, the upper
bound is generally set to wi (0) = 0, implying xi (0) = ξ. This is a reference
to the case of symmetric play as xi (0) > ξ paths there could be discarded
for violation of a transversality condition. This upper bound may not be
meaningful in the case of asymmetric play.

As unique paths are not generally found by a grid not designed to look for
them, the 2-singularity locus of system 3.6 is also computed. Paths are then
computed off of points on this locus. Points on the locus satisfy equations
3.27 (non-invertibility) and 3.29 (spanning given non-invertibility). As the
possibility that 2g = w2 was eliminated by the distinct roots condition in
Lemma 3.19, the second condition is reduced to

g =
ν (z − ζ)

β + δ
.

With g defined in equation 3.7, calculation of the 2-singularity reduces to
a problem of three unknowns and three equations (one of them quadratic).
Computationally, the 2-singularity locus is then calculated by setting w1 =
−2ξ and using a non-linear solver to determine (w2, z); w1 is then varied
and the procedure repeated until reaching the singular point on the w1 = w2

symmetric plane. For the calibrations used here, this technique has sufficed
as the 2-singularity locus intersects wi = −2ξ.

3.5.3 Testing paths

Having determined initial conditions, paths are then tested against various
conditions as they evolve. Two tests are used to detect truly non-invertible
paths. The first is triggered by a sign change in the determinant. As com-
putation may become slow around these points, the second test is triggered
when the determinant falls in absolute value to less than some small toler-
ance.

This second test falsely rejects some genuine functions of the sort il-
lustrated in Figure 3.2. Here, the determinant becomes small as w → 0
but, in all cases, the paths still define functions. None of the paths are non-
invertible in the sense of ‘doubling back’, the sense in which non-invertibility
was defined.

Define points of the sort at w = 0, z 6= 0 in Figure 3.2 by:

Definition 3.27 An inverted inflection point of a function w () is a point

w (z) at which dw
dz

= ±∞ and d2z
dw2 = 0. When w () is a vector, an inverted

inflection point requires these relationships to hold for all elements of the
vector w ().
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z

w (z)

cusp

inverted inflection

Figure 3.2: Small determinants but still functions: w2 dw
dz

= z

Therefore:

Theorem 3.28 There are no inverted inflection points in system 3.6.

Proof. In system 3.6, the second condition of the definition of an in-
verted inflection point implies that

d2z

dw2
i

=
g − 1

4wj

(β + δ)
(

g − 1
2wj

)

wi + 2ν (z − ζ)
(

g − 1
2wi

)

−
(

g2 − 1
2w1w2

)

(β + δ)
[

1
2 (wi − wj) + g

]

[

(β + δ)
(

g − 1
2wj

)

wi + 2ν (z − ζ)
(

g − 1
2wi

)]2 , i 6= j ∈ {1, 2} .

The first condition of the definition holds at the non-invertible points
g2 = 1

4w1w2. Substitution then produces

d2z

dw2
i

|NI =
g − 1

4wj

(β + δ)
(

g − 1
2wj

)

wi + 2ν (z − ζ)
(

g − 1
2wi

) , i 6= j ∈ {1, 2} .

A necessary condition for this to be zero is that g = 1
4wj , implying (with
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the non-invertible condition) that g = wi. Further substitution then allows

d2z

dw2
i

|NI =
0

− (β + δ) g2 − ν (z − ζ) g
.

Necessary and sufficient conditions for d2z
dw2

i

|NI = 0 are now that g = 1
4wj =

wi 6= 0. As this must hold simultaneously for both i = 1, 2 the restriction
that g 6= 0 prevents acceptable non-invertible paths existing.

Theorem 3.29 There are no inverted inflection points of system 3.9.

Proof. Now the second condition produces

d2z

dw2
j

=
1
2

(β + δ)wj + 2ν (z − ζ)
− h (β + δ)

[(β + δ)wj + 2ν (z − ζ)]2
;

for the non-cornered agent. At non-invertibility, h = 0 so that

d2z

dw2
j

=
1
2

(β + δ)wj + 2ν (z − ζ)
6= 0.

As there are therefore no invertible inflection points along wj (), there are
none in system 3.9.

Now define points of the sort at (w, z) = 0 in Figure 3.2 by:

Definition 3.30 A cusp of a function w () is a point w (z) at which

1. w (z) is finite; and

2. w′ (z) is not defined; and

3. either limz+w
′ (z) =∞ and limz−w′ (z) = −∞, or vice versa.

When w () is a vector, a cusp requires the foregoing conditions hold for all
elements of the vector w.

This is a very particular definition of a cusp, designed to identify points
at which det (A) approaches zero. Notably, the definition excludes kinks
(such as z = 0 in w (z) = abs (z)) and, by its vertical orientation, many of
the usual cusps. The definition also excludes non-invertible points by its
requirement that w () be a function.

The possibility of a cusp in system 3.6 is addressed by adding a further
condition to the code according to the following two observations. First, the
cusp’s infinite derivatives require that g2 = 1

4w1w2 (non-invertibility) to set
the denominators of system 3.6 to zero. The second observation requires
that the solution path in question be considered as the parameterised curve
(w1 (s) , w2 (s) , z (s)), for parameter s. As the cusp is a point where w′i is not
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defined, it must have no tangents, thus satisfying
(

dw1(s)
ds

, dw2(s)
ds

, dz(s)
ds

)

= 0

at the cusp. A natural parameter to use is s = t in which case this condition
may be expressed as

(

dw1

dz
,
dw2

dz
, 1

)

ż = 0;

for which a necessary and sufficient condition is that ż = 0 or, in the present
notation, g = 0.

Therefore, when approaching g2 = 1
4w1w2 (non-invertibility) in system

3.6, those paths for which g ≈ 0 (cusp) are identified.

This approach is somewhat unsatisfactory as one might expect paths
containing cusps to be isolated, and therefore not usually detected by the
present technique of integrating along grids of initial conditions. In the
present case of linear terms in the A matrix one might expect a formal
non-existence proof to be possible.

A stronger statement may be made about system 3.9:

Theorem 3.31 There are no cusps in system 3.9.

Proof. The infinite derivatives as a cusp is approached require that
h → 0 ⇒ wj = 2 (βz − ξ); the cusp also requires a sign change in w′ ()
around it. Consider, then

w′j =
(β + δ)wj + 2ν (z − ζ)

h
.

Passing through h = 0 changes the sign of the denominator, requiring that
that of the numerator be preserved; this requires that

z 6= (β + δ) ξ + νζ

β (β + δ) + ν
.

Similarly,

w′i =
[(β + δ)wi + 2ν (z − ζ)]h− 1

2wi [(β + δ)wj + 2ν (z − ζ)]

h2
.

Now, though, the numerator must change its sign while h passes through
zero, requiring that

z =
(β + δ) ξ + νζ

β (β + δ) + ν
;

and incompatible with the requirement from w′j .
Therefore, not both w1 and w2 can be cusps at the same time in system

3.9, violating the definition of a cusp.

As h = 0⇔ ż = 0, and as solutions to system 3.9 may be written as the
parameterised curves (w1 (z (t)) , w2 (z (t)) , z (t)), points at which h = 0 are
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also points at which tangents do not exist to these solution paths. As these
points are not cusps they must represent asymptotes.

To conclude, the small determinant test does not discard inverted inflec-
tion points as systems 3.6 and 3.9 do not have any. It does not discard cusps
from system 3.9 for the same reason; in the case of system 3.6, the small
determinant test is supplemented by a direct test of g ≈ 0.

There are also other conditions that discard paths from further consid-
eration. Tests for these have also been implemented in the code. Quasi-
non-invertible paths, for example, are identified by sign tests on the deriva-
tives when moving across wi = −2ξ. Paths setting Wi (z) > 0 for some
z are detected by means of Bellman equation 3.2. As this relates Wi (z)
and wi (z) ≡ W ′

i (z), and as integration determines wi (z), Wi (z) is easily
calculated.

It may also be determined when a path along which both agents have
cornered (wi (z) ≤ −2ξ, i = 1, 2) stays in the corner. This calculation im-
plements page 57’s Lemma 3.1, which provided a sufficient condition for
exactly this outcome. In these cases, the path is then tested against the
transversality conditions of Section 3.3.2.

If any of these conditions is met, or if z̄, the (finite) upper limit of
integration is reached, integration terminates and the next path in the grid
is selected. An upper limit of integration of z̄ = 1 × 1017 has sufficed to
ensure that all paths selected by the grid method will fail at least one of
these conditions before reaching z̄.1

The integration routines used are from the Numerical Algorithms Group
(NAG).2 For initial value problems with high accuracy requirements, the
NAG library recommends Adams methods when the system is not stiff.3

The present code therefore uses the d02cjc ordinary differential equation
solver, a variable-order, variable-step Adams method. When d02cjc fails
to make further progress the d02ejc ordinary differential equation solver
for stiff systems sometimes makes more headway; it uses a variable-order,
variable-step backward differentiation formula.4

1The NAG routine d02cjc chooses its first step size as a function of z̄ − z. Increasing
the upper limit of integration has caused one or two paths, originally discarded as non-
invertible, to become discarded for setting Wi (z) > 0, and vice versa. As, in either case,
these paths were discarded, this instability is unlikely to affect the equilibrium set.

2The implementation code of the NAG routines used is CLSOL05DA, the NAG C Mark
5 library for Sun SPARC Solaris Double Precision operating systems. See www.nag.co.uk
for more information.

3The stiffness ratio of a system is defined as

s ≡
maxi µi
mini µi

i ∈ {1, 2} ;

where µi is the real component of the ith eigenvalue of the (linearised) system. An ordinary
differential equation system in z is stiff if µi < 0, i = 1, 2 and s >> 1. A nonlinear system
in which s varies is stiff in an interval I when the above hold and z ∈ I [Itô86, 303.G].

4NAG sample code often uses the square root of machine zero as the tolerance; on the
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3.5.4 Conditioning

As numerical computation relies upon finite approximations to real numbers,
certain operations risk dropping the number of significant digits carried to
below acceptable levels. The condition number of a system is a crude ap-
proximation to the number of digits lost: when expressed as a power of 10,
the exponent reflects the number of significant digits lost in an operation.

Condition numbers may be calculated in a number of different ways,
usually in agreement as to order of magnitude. Particularly easy to compute
is that based on the L∞ norm:

Definition 3.32 For a matrix A with elements aij and inverse A
−1 with

elements a−1ij the L
∞ norm condition number is

cond∞ (A) ≡ max
i,j
{|aij |} ×max

i,j

{∣

∣

∣a−1ij

∣

∣

∣

}

.

As computation is performed on a Sun SuperSPARC 1000 with 15 - 16
significant digits, convention calls a path poorly conditioned when cond∞ >
1010 [Jud98, §3.5].

The condition numbers of systems 3.6 and 3.9 are

cond∞ (A) =
max

{

1
4w

2
1,

1
4w

2
2, g

2, 1
}

|det (A)| , wi ≥ −2ξ, i = 1, 2; (3.41)

and

cond∞ (A) = max

{

(wi

2h

)2
, 1

}

, wi ≤ −2ξ, i = 1, 2; (3.42)

respectively. In both cases, a non-invertible A is sufficient for poor condi-
tioning. Call a path acceptably poorly conditioned if it sets det (A) ≈ 0 and
if its neighbours are also poorly conditioned. Discard these paths from con-
sideration as candidates by the following argument: it is unlikely that the
path has been falsely identified as non-invertible (a sufficient condition for
discarding it) due to a round-off error as its neighbours suffer the same fate.
It is unclear whether this argument is sound; it has not been encountered
in the papers cited here.

Conversely, if a large numerator causes poor conditioning, this may be
unacceptable and more careful investigation would be warranted.

3.6 Results

The parameter values usually used in the numerical analyses are displayed
in Table 3.1. They are labelled ‘multiple’ or ‘unique’ on the basis of whether
they give rise to multiple or unique MPE when play is symmetric. Inequality

present hardware this convention implies that TOL= 10−8.
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β δ ν ξ ζ

Multiple symmetric EQ 1
10,000 0 5.4× 10−7 1.5 760

Unique symmetric EQ 1
115

1
100 5.4× 10−7 1.5 760

Table 3.1: Sets of parameter values most commonly used

3.38, which described when the paths through a singularity would always
be real, holds for neither calibration, allowing the possibility of a more com-
plicated 2-singularity locus. Neither calibration satisfies condition C.4 of
Appendix C, the sufficient condition for corner play to be a best response;
this rules out solutions in which xi (z) = 0∀z for some i.

In the ‘multiple’ calibration, inequality 3.39 (inequality 3.38 after the
variable transformation) becomes q < 2 or q > 161. These imply either that
(p− 1)2 < 0 or that p2 − 161p + 1 > 0. The former yields a contradiction,
the latter that p . .0062 or p & 160.9938 (where the values are each others’
reciprocals). Starting from the symmetric p = −1, then, it is only possible
to move so far in the direction of asymmetry with p increasing before the 2-
singularity locus disappears. In this case, by equation 3.28, w1 ≈ 25, 919w2

is the most extreme asymmetry possible. In the present calculations, the
boundary of wi = −2ξ is hit when w1 = −3 and w2 ≈ −1.04, well within
these limits. The 2-singularity locus is therefore not complicated.

Results of running the code with these parameter values are presented in
the following figures. The case of the multiple symmetric equilibria is pre-
sented in Figure 3.3 and that of the unique symmetric equilibrium in Figure
3.6. The axes represent the initial conditions w1 (0) and w2 (0); when these
are in (−3ξ,−2ξ) they correspond to starting play in the corner, x (0) = 0.
The regions that result represent the outcome of the paths starting with
these values; they do not indicate the level of z, for example, at which the
outcome occurs. Under both calibrations the linear equilibria are unique in
the class of linear equilibria, consistent with the result presented in Lock-
wood [Loc96].

3.6.1 Multiple symmetric equilibria

The results of numerical integration based on the grid of initial conditions are
examined first for signs of MPE. Attention is then turned to the possibility
of one dimensional MPE by investigating one dimensional loci of potential
interest.

Grid of initial conditions

The parameter values generating multiple symmetric equilibria produce Fig-
ure 3.3. A consistency check may be performed by comparing results along
the symmetric axis to the analytical results displayed in, for example, Figure
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Figure 3.3: Outcome as a function of 100× 100 initial conditions (multiple
symmetric equilibrium)

2.2. They match: paths with wi (0) < −2ξ never set xi > 0, corresponding to
the x0 analytical paths. Beyond the wi (0) = −2ξ border there is a region of
MPE paths, the x̂3 family. The analytical world follows these by an upward
sloping linear path, xa, before the x4 and x5 paths; in Figure 3.3 these latter
correspond to the paths in the truly non-invertible region. Analytically, the
next boundary is the x̂b MPE path, after which the unbounded x6 paths
appear; Figure 3.3 possesses these features.

Now asymmetric MPE strategies may be sought.

There is no evidence of regions of asymmetric MPE. The asymmetric
neighbours of the continuum of MPE paths might have been expected to
be but robustness fails: even asymmetries as small as machine zero lead to
quasi-non-invertibility. This occurs as the symmetric strategies that sup-
port the MPE obey equations 3.14 after cornering; their neighbours obey
equations 3.9.
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Given that the grid technique does not reveal asymmetric MPE, they
may be sought in two more places. First, there may be regions of MPE too
small to be detected by the grid technique. Second, the MPE may be one
dimensional or isolated in (w1 (0) , w2 (0)) space. The following pursues this
latter possibility by exploring the boundaries between regions.

One dimensional MPE?

Given the relationship in Figure 2.2 between the 2-singularity there and the
linear MPE strategy, paths through the 2-singularity locus are examined
here. Because normal integration is not possible near this locus the following
method is used:

1. integration off of any point on the 2-singularity locus initially occurs by
solving quadratic equation 3.24 for λ. Knowledge of r then determines
the two slopes, allowing initial movement off the locus to be calculated.

2. when the absolute value of det (A) exceeds zero by some tolerance, the
NAG integration routines are again used.

Although condition 3.38 does not hold for all p for this calibration, two
paths through each singular point are found by this method over the range
calculated, as anticipated in the previous discussion.

The results of this procedure are displayed in Figure 3.4. The paths
increasing to the left are therefore x̂b and its asymmetric siblings; those
increasing to the right are xa and its siblings. The two loci of points for
which these paths intersect z = 0 produce the boundaries in Figure 3.3
noted above.

Integration reveals that none of the asymmetric paths are equilibria.
The increasing paths set Wi (z) > 0 while the decreasing paths become
quasi-non-invertible when they intersect wi = −2ξ. In the former cases, the
asymmetric increasing paths seem to approximate xa as z increases. In the
latter cases, paths closer to the far end of the singularity locus actually loop
back on themselves, passing through the same point on the singularity locus.
Those paths setting Wi (z) > 0, beyond the end of the 2-singularity locus,
do not cross wi = −2ξ.

There is therefore no evidence of new MPE paths along the singular
locus.

Some other boundaries also bear investigation. That between the cor-
nered and the (poorly conditioned) truly non-invertible paths simply divides
paths into those with zero emissions initially and those with positive emis-
sions.

The next boundaries to the north (near w1 (0) = −ξ) are explored by
integrating along a section of initial conditions, s1−s1, as displayed in Figure
3.5. The southernmost of these paths becomes non-invertible with w2 very
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negative and large.5 When w2 < −2ξ, the condition for non-invertibility is
that h = 0, or w1 = 2 (βz − ξ), a line in (w1, z) space. The second path
starts at w1 (0) > −ξ; this returns from the corner, but becomes quasi-non-
invertible in doing so. The third path returns properly from the corner but
ultimately sets Wi > 0.

This pattern is repeated to the east-north-east, on the other side of
w2 (0) = −2ξ (or x2 (0) = 0), with a single difference: while still becoming
truly non-invertible, the southernmost paths now start in the interior; they
do not corner and they remain well conditioned. The quasi-non-invertible
paths again fail to leave the corner, while those that set Wi (z) > 0 do leave
the corner (or never corner if the initial conditions are large enough).

By integrating along paths close to the NW border between theWi (z) >
0 paths and the quasi-non-invertible paths to their south it may be seen that
this border sets w′i (−2ξ) =∞. Similarly, the border to the south, separating
quasi- and truly non-invertible paths marks w′i (−2ξ) = −∞. As none of
these boundaries allow the paths through them to be MPE, no evidence is
found for asymmetric MPE.

In conclusion, confidence in the belief that asymmetric MPE strategies
do not exist is good. None have been found, either by the initial grid search
or by more specific searches attuned to one dimensional loci of interest; all
of the poorly conditioned paths are acceptably so; there is no evidence of
cusps.

3.6.2 Unique symmetric equilibrium

As the results here are simpler than those above, they are presented in
more cursory fashion. Again, there is no evidence of new regions of MPE.
The symmetric axis of Figure 3.6 is consistent with analytical results under
symmetric play. Initially paths corner; now these paths are not just the x0

family but x̂a and some x4 paths. When starting values are large enough
for paths not to corner they are the x4 and x5 paths. The grid of initial
conditions displayed in Figure 3.6 does not extend to sufficiently high initial
conditions to demonstrate the x̂b path and the x6 family but individual
integration with initial conditions up to wi (0) = ξ do reveal them.

Novel here are the large areas in which even the hardier d02ejc integra-
tion routine has failed. All individual paths explored are found to approach
the non-invertible h = 0, accompanied by an exponential decline in one
of the wi (z); these are therefore acceptable examples of poor conditioning.
The border through which section s2 (indicated in Figure 3.6) passes illus-
trates: to its north, agent 2 corners to approach system 3.9’s non-invertible
surface; to its south, agent 2 hits the system 3.6 non-invertible surface before
cornering.

5As the poor conditioning of these paths prevented d02cjc from identifying them,
d02ejc was used.
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Again, there is no sign that cusps have been detected.

3.7 Discussion

This paper suggests that the non-linear equilibria of Chapter 2 are not ro-
bust: their neighbouring asymmetric paths do not support MPE. Further-
more, this paper finds no evidence of new asymmetric MPE. This is a weaker
statement than a formal proof, which might be constructed by extending the
proof technique used in Chapter 2. In that case, all possible families of so-
lutions to equation 3.8 were identified on the ensuing phase diagram, Figure
2.2. Asymmetric play does no more than add additional dimensions: fam-
ilies of paths could be identified in <3 and analogous arguments used. For
example, those paths to the ‘right’ of the singularity locus in Figure 3.4,
between the paths through the singularity, seem to converge towards xa; if
they did, that would be sufficient for their dismissal.
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One of the features of the symmetric system is that it has both one
fewer equation and one fewer unknown than does the system that allows
asymmetric play. As the equations are not simple linear equations, this
counting technique should not account for the non-robustness of the contin-
uum. Rather it seems that the case of symmetric play is simply a special
case, exhibiting properties not elsewhere found in the unrestricted system.
This special aspect of symmetric play may also give rise to the continuum
result found in the model with logarithmic consumption utility presented
earlier in Appendix B.

Initially Wirl and Dockner’s model of a monopoly supplier and a monop-
sony demander [WD95] seems to provide a counter-example to this possible
link between agent symmetry and multiplicity. In spite of their agents’ asym-
metry, they too find a continuum of MPE. They do this analytically, first
summing the two differential equations describing candidate value functions
into a single one to define a new candidate value function. They then follow
the approach of Tsutsui and Mino’s 1990 paper [TM90]. This second step
reduces confidence in their analysis for the reasons outlined in Chapter 2.

The pleasant computational implication of the suspected uniqueness of
MPE strategies is that calculation of MPE for more than two agents may
be reduced, in the linear-quadratic model, to the solution of coupled Riccati
equations. Uniqueness may also have practical consequences for those situ-
ations reflected in this model: Pareto improvements cannot be obtained by
coordinating on superior Nash equilibria (cf. Radner [Rad98, p.8]).

For games that are not linear-quadratic, though, it is unclear what con-
clusions may be drawn from the present analysis. In those cases the Riccati
equations are not generally of use. It should not be expected that the 2-
singularity locus derived here might apply to them. It is to be expected that
individual exploration of non-linear-quadratic games remains necessary; the
techniques used here should provide much of what is needed.

Finally, while the control bounds considered here are one-sided (≥ 0) the
present techniques are independent of this assumption. Analysis could be
extended easily to include an upper bound as well. In this case there would
be 32 scenarios to consider rather than the present 22.



86 3. Two symmetric agents and asymmetric play



Appendix D

Simplifying the discriminant

This appendix contains the proof of Lemma 3.21 (q.v. page 69). That pre-
sented a necessary and sufficient condition for the quadratic equation in
Theorem 3.13 to have a positive discriminant. The bulk of this appendix
is devoted to producing a quadratic expression in r1 as a function of the
parameters (p, β, δ, ν, ξ, ζ); the expression for the discriminant then follows.

As the general quadratic equation 3.19 has two roots, let w′i = ri, i = 1, 2,
so that ri does not need correction by a λ term to produce a slope. Note
also that

r3 = g =
2ξ − βz

1− p− 1
p

;

where the last equality comes from the definition of g and the generating
lines of equation 3.28. The (r1, r2) terms require more calculation. When
g 6= 0, system 3.36 (system of differential equations 3.6 at non-invertibility)
may be written as

(

r1 +
1

p
r2

)[

1
p

]

= 2 (β + δ)

[ 1
p

p

]

+2ν (z − ζ)

(

1− p− 1
p

)

(2ξ − βz)

[

1
1

]

. (D.1)

Dividing the second by p 6= 0 to equate their RHS leads to

2 (β + δ)

(

1

p
− 1

)

=

(

1

p
− 1

)

2ν (z − ζ)

(

1− p− 1
p

)

(2ξ − βz)
;

so that p 6= 1 implies that

(β + δ) = ν (z − ζ)

(

1− p− 1
p

)

(2ξ − βz)
.

When z 6= 2ξ
β

z =
2ξ (β + δ) +

(

1− p− 1
p

)

νζ

β (β + δ) +
(

1− p− 1
p

)

ν
;

87
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so that

g =
(2ξ − βζ) ν

β (β + δ) +
(

1− p− 1
p

)

ν
.

Violation of the assumed z 6= 2ξ
β

causes g = 0 and rank (A (σ)) = 0, a
violation of the first condition of Theorem 3.13.

Substituting into equation D.1 then produces

r2 = 2 (β + δ) (1 + p)− pr1. (D.2)

Differentiate system 3.6 at non-invertibility for

[

g 1
p
g

pg g

] [

w′′1
w′′2

]

+

[

g′ 1
2w

′
1

1
2w

′
2 g′

] [

w′1
w′2

]

= (β + δ)

[

w′1
w′2

]

+ 2ν

[

1
1

]

.

Premultiplying by
(

c1 c2
)

=
(

1 −1
p

)

then produces

[

g′ − 1
p
1
2r2

1
2r1 − 1

p
g′
]

[

r1
r2

]

= (β + δ)

(

r1 −
1

p
r2

)

+ 2ν

(

1− 1

p

)

.

As g′ = 1
2 (r1 + r2)− β this simplifies to

1
2r

2
1 − 1

p
1
2r

2
2 +

(

1− 1
p

)

r1r2

= (2β + δ) r1 − 1
p
(2β + δ) r2 + 2ν

(

1− 1
p

)

. (D.3)

Substitute equation D.2 into equation D.3 for

1

2
r21 −

1

p

1

2
[2 (β + δ) (1 + p)− pr1]

2

+

(

1− 1

p

)

r1 [2 (β + δ) (1 + p)− pr1]

= (2β + δ) r1 −
1

p
(2β + δ) [2 (β + δ) (1 + p)− pr1]

+2ν

(

1− 1

p

)

;

which reduces to the canonical form

r21 +
4

3

[

(β + δ) (1 + p)
(

2− 1
p

)

− (2β + δ)
]

(1− p)
r1

4

3

[

(β + δ)
(

1
p
+ 1

)

(2β + δ)− (β + δ)2
(

1
p
+ 2 + p

)

− ν
(

1− 1
p

)]

(1− p)

= 0.
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The discriminant of this is

16

9p2(p− 1)2

{

[β + δ]2 p4 −
[

β2 + 3ν + βδ
]

p3

−
[

2βδ + δ2 − 6ν
]

p2 −
[

β2 + 3ν + βδ
]

p+ [β + δ]2
}

.

When p 6= 1, a positive discriminant therefore requires that

[β + δ]2 p4 −
[

β2 + 3ν + βδ
]

p3 −
[

2β δ + δ2 − 6 ν
]

p2

−
[

β2 + 3ν+βδ
]

p+ [β + δ]2 > 0.
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Chapter 4

Two asymmetric agents

4.1 Introduction

Using the same model and techniques developed in Chapter 3, this chapter
considers a case in which asymmetric agents play asymmetrically. The case
is chosen as a technical example, rather than to model a feature of the real
world. In it, agents are identical save that one is perfectly patient while the
other is not. As before, there are no new non-linear MPE found.

The code is only slightly generalised to increase the parameter space.
This chapter is therefore quite short.

Section 4.2 presents the new model, Section 4.3 the results and Section
4.4 concludes.

4.2 The linear-quadratic model with asymmetric
agents

Generalise the instantaneous utility functions to

ui (xi, z) = − (xi − ξi)
2 − νi (z − ζi)

2 , i = 1, 2;

and use the linear equation of motion 2.3,

ż (t) = x1 (z) + x2 (z)− βz (t) .

Each agent’s Bellman equation is now

δiVi (z) = max
xi≥0

{

ui (xi, z) + V ′i (z) (x1 + x2 − βz)
}

; (4.1)

which has the first order condition

x∗i = max

{

0, ξi +
1

2
V ′i (z)

}

.
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The slight generalisation introduced here does not cause the model to violate
the Lockwood [Loc96] conditions for unique affine MPE strategies.

Again, there are 2 × 2 scenarios. When W () refers to a candidate
strategy, as before, the Bellman equation in x∗i , differentiated and with
wi (z) ≡W ′

i (z), is

w′i (z) (x
∗
1 + x∗2 − βz) =

(

β + δi − x∗′1 − x∗′2
)

wi (z)

+2νi (z − ζi) + 2x∗′i (x∗i − ξi) .

The equations associated with each of the scenarios are as follows.

4.2.1 Both agents interior

When both agents are in the interior, x∗i > 0∀i = 1, 2 ⇒ x∗i = ξi +
1
2wi (z) , x

∗′
i = 1

2w
′
i (z) ∀i = 1, 2 with Bellman system

[

g 1
2w1

1
2w2 g

] [

w′1
w′2

]

=

[

(β + δ1)w1 + 2ν1 (z − ζ1)
(β + δ2)w2 + 2ν2 (z − ζ2)

]

; (4.2)

where

g ≡ 1

2
(w1 + w2)− βz + (ξ1 + ξ2) ;

so that ż = g (w, z).
The non-invertibility locus is still defined by g2 = 1

4w1w2 but the span-
ning condition is now

(β + δ1)w1w2 − (β + δ2) (2g)w2 + 2ν1 (z − ζ1)w2 − 2ν2 (z − ζ2) (2g) = 0;

an algebraic variety of degree two. This reduces to equation 3.29, the inter-
secting line and plane, in the degenerate case of symmetric agents. Sample
vectors involved in non-invertibility and spanning, according to the notation
of Definition 3.12 and Theorem 3.13, are then

q =

(

−sign(wi)

√

w1

w2
, 1, 0

)′
;

c =

(

−sign(wi)

√

w2

w1
, 1, 0

)

;

r = g×
(

2 (β + δ2) , 2
ν2
g
(z − ζ2) , 1

)′
.

4.2.2 One agent interior, the other cornered

Let agent j be in the interior and agent i be on the corner. Then x∗j >

0, x∗i = 0 ⇒ x∗j = ξj +
1
2wj (z) , x

∗′
j = 1

2w
′
j ;x

∗′
i = 0 with differential Bellman

equation system
[

h 0
1
2wi h

] [

w′j
w′i

]

=

[

(β + δj)wj + 2νj (z − ζj)
(β + δi)wi + 2νi (z − ζi)

]

;
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β δ ν ξ ζ

Agent 1 0 5.4× 10−7 1.5 760
Agent 2

1
10,000 1

100 5.4× 10−7 1.5 760

Table 4.1: Test asymmetric parameter values

where

h ≡ ξj +
1

2
wj − βz;

so that ż = h (w, z).

4.2.3 Both agents cornered

When both agents are cornered x∗i = 0∀i = 1, 2 ⇒ x∗′i = 0 with differential
Bellman equation system

w′i = −
(β + δi)wi + 2νi (z − ζi)

βz
∀i = 1, 2;

whose solution is

wi (z) = Kiz
β+δi
β + 2νi

(

ζi
β + δi

− z

δi

)

= z

{

Kiz
δi
β − 2νi

δi

}

+
2νiζi
β + δi

;

where Ki is a constant of integration. As in equation 3.14, the equivalent
equation to the above in Chapter 3, Ki < 0∀i = 1, 2 ⇒ xi (z) = 0∀i =
1, 2, z ∈ Z and Ki > 0 for some i ∈ {1, 2} implies that i will return to the
interior.

4.3 Results

The calibration tested here is displayed in Table 4.1. This do not satisfy
inequality C.5, which determined when xi (z) = 0∀z, i ∈ {1, 2} might be
optimal play.

The results are presented graphically in Figure 4.1. The labelling is
slightly simplified here: although many starting values lead to integration
failure regions are still labelled according to logic presented below. The 2-
singularity locus is not calculated for this model. There is no evidence of
regions of MPE.

The multiple symmetric equilibria of Figure 3.3 may be regarded as a
limit of the results in Figure 4.1 as δ2 → 0. To approximate this, a series
of δ2 =

{

1
1000 ,

1
10000 ,

1
100000 ,

1
1000000

}

has been explored. As expected, these
calibrations increasingly resemble Figure 4.1. The poorly conditioned zone
setting Wi (z) > 0 is immediately replaced by a well conditioned one; the
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6

- w2 (0)

w1 (0)

linear
MPE

integration
failure
(poorly

conditioned)

integration
failure Wi (z) > 0

truly non-
invertible

cornered
paths

integration
failure
(poorly

conditioned)

Wi (z) > 0

(poorly

conditioned)

0

ξ

−ξ

0

}

Figure 4.1: Outcome as a function of initial conditions (asymmetric players)

region of failed integration in the north-west disappears; that of poorly con-
ditioned integration failure below it shrinks, its northern boundary becoming
a region of quasi-non-invertibility. This sense of continuity allows the guess
that these regions of integration failure might be truly non-invertible, by
analogy to Figure 3.3. Finally, there is again no evidence of new regions of
MPE.

Linear strategies

As Lockwood’s conditions apply to system 4.2, it possesses a unique linear
MPE. That is now calculated. First define

Vi ≡ ai + biz +
1

2
ciz

2;

vi = bi + ciz.
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By substituting in the interior first order conditions, Bellman equation 4.1
may be rewritten as

0 =
[

(ξ1 + ξ2) +
(b1+b2)

2 − bi
4

]

bi − νiζ
2
i − δiai

+
[

2νiζi + (ξ1 + ξ2) ci +
(b1+b2)

2 ci +
(c1+c2)

2 bi − βbi − bici
2 − δibi

]

z

+
[

(c1+c2)
2 ci − βci − c2i

4 − νi − δi
2 ci

]

z2, i 6= j ∈ {1, 2} ;
(4.3)

the system of coupled algebraic Riccati equations in powers of z. Only those
in z and z2 need solution to determine vi.

First, solve the nonlinear equations in z2 for

ci = −2







1

2
cj − β − 1

2
δi ±

√

(

1

2
cj − β − 1

2
δi

)2

+ νi







, i 6= j ∈ {1, 2} .

The knowledge that the linear MPE path slopes downwards allows this to
be refined as

ci = −2







1

2
cj − β − 1

2
δi +

√

(

1

2
cj − β − 1

2
δi

)2

+ νi







, i 6= j ∈ {1, 2} .

(4.4)
This system may of two non-linear equations is solved numerically by the
NAG routine c05tbc, a non-linear equation solver that uses a “modification
of the Powell hybrid technique”.

Once system 4.4 is solved, the values for c may be substituted into the
coefficients of z in system 4.3. These equations are linear in their unknowns,
bi, so that

[

b1
b2

]

=

[

(c1+c2)
2 − (β + δ2) −1

2c1

−1
2c2

(c1+c2)
2 − (β + δ1)

]

[

−2ν1ζ1 − (ξ1 + ξ2) c1
−2ν2ζ2 − (ξ1 + ξ2) c2

]

(c1+c2)
4

2
− (c1+c2)(2β+δ1+δ2)

2 + (β + δ1) (β + δ2)− c1c2
4

.

Therefore, for the calibration presented in Table 4.1,

v = b+ cz≈
[

−0.0404
0.0164

]

−
[

0.0012
0.0001

]

z;

and v (0) ≈ (−0.0404, 0.0164). This last point is indicated in Figure 4.1 as
the linear MPE.

Calculation of a would allow a preliminary statement to be made about
payoffs’ relationship to impatience; one expects the patient player to out-
perform the other. Table 4.1’s calibration makes this impossible: ai only
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appears in equation 4.3 as a coefficient of δi. As δ1 = 0 here, a1 is not
determined.1

4.4 Discussion

There is no evidence of MPE in this model other than the linear MPE.
While scrutiny of the numerical results has been more cursory here than in
Chapter 3, confidence is still high in this result as nothing seen here has
been surprising.

The absence of non-linear equilibria facilitates calculation of equilibria in
more realistic calibrations of the model (perhaps along the lines of Nordhaus
and Yang’s five agents [NY96]) and, consequently, comparative statics.

1From the outset, the Bellman equations used here assumed strictly positive discount-
ing. The problem just encountered may illustrate the consequences of perfect patience.



Chapter 5

Transfer functions:
non-cooperative cooperation

5.1 Introduction

This chapter explores the thesis’ second question, that of non-cooperative
cooperation. In doing so, it offers another approach to the general problem of
externalities. The two most commonly offered solutions - Pigouvian taxes
and Coasian assignment of property rights - depend on the presence of a
social planner. Here, by contrast, an approach that does not require a
planner is explored by expanding the strategy space available to agents.
Now they are allowed to offer transfers contingent upon emissions as reward
schemes. This grants agents a second control variable, in contrast to the
single control that they have possessed previously.1

This interest in transfers follows from two observations. First, transfers
have played a role in the political discussion on coordinating greenhouse gas
emissions. The Kyoto Protocol agrees in principle that nations may ‘trade’
emissions in order to meet their emissions reduction targets. This may be
interpreted as a conditional transfer mechanism: one country provides a fi-
nancial transfer to another in return for an agreement on emissions from
the latter. The permitted means under Kyoto for trading emissions have
yet to be resolved, and are a matter of dispute. Nevertheless, some com-
panies, typically electrical utilities, have made arrangements with foreign
governments to, for example, reforest to increase a carbon dioxide sink.

Indeed, transfer-like activity is the stuff of international diplomacy. While
much of it will involve in kind reciprocation there are also examples of mon-
etary transfers. US aid to Israel and Egypt increased substantially after
President Carter’s Camp David accords; its aid to Yemen was withdrawn
after the latter’s Security Council vote against the use of force to reverse
Iraq’s 1990 invasion of Kuwait.

1Some label games with these larger strategy spaces ‘linked games’ (q.v. [Car97]).

97
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The second motivation for the consideration of transfers is related to
this first: voluntary transfers offer the possibility of Pareto improvement
without a social planner. They may therefore be possible in a world such as
the present, where there is no international social planner.

To analyse transfers, this chapter specifies transfer strategies as func-
tions. To understand why, consider the usual case, in which agents select
specific levels of play. Here, as the Nash equilibrium assumes other agents’
play to be fixed, voluntary transfers incur a cost without offering the possi-
bility of altering the others’ play. Unless the game is specified in such a way
as to yield other benefits to these transfers, agents will not make them in
equilibrium. Consideration of transfers therefore requires a solution concept
that allows agents to anticipate the possible response of others to their offer
of transfers.

Such a solution concept has been provided in Klemperer and Meyer’s
paper on functional Nash equilibria [KM89]. Their motivating example was
an oligopoly problem with demand shocks that occur after firms choose their
strategies. Firms therefore select supply functions to respond flexibly to the
uncertainty. This does not require any sort of commitment technology as
the functions are chosen to so that any outcome is ex post optimal. The
uncertainty, then, serves at least three roles. First, it serves to motivate
the selection of functions. Second, it can assist (as explained in Section
1.3.3) in refining the set of functional equilibria. Third, it may model more
accurately the problem at hand.

Note that voluntary transfers are not entirely non-cooperative. Unless
the transfer is a lump sum (in which case it is either not a function or is
a degenerate one and does not affect incentives at the margin), there is a
question of how the transfer takes place: does its recipient play first and
hope that the transfer is then given or does the donor make the transfer
and hope that it is understood as a function rather than a lump sum? As
transfer-like behaviour does take place in the realm of international affairs
there is clearly a phenomenon to be explained.

This, of course, is no different than the common game theorist’s question
of how cooperation arises in non-cooperative games. The usual approach to
this is, of course, to look for non-Markov punishment strategies in repeated
games. This chapter, however, presents a one-shot model for the sake of
tractability. It therefore solves the cooperation problem by assumption:
agents offer functions; there is no enforcement problem.

Section 5.2 presents the functional Nash equilibrium concept and related
terminology. Section 5.3 explores FNE in a simple model without transfers,
presenting an existence and a non-existence result. This and Section 5.4,
which develops the Pareto frontier, form baselines for comparison for Section
5.5, which extends the initial simple model to include transfers. Section 5.6
then concludes.
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5.2 Functional Nash equilibria

In the class of games examined below a state variable is defined as follows:

z ≡ x (z) + y (z) + ε; (5.1)

where agent 1 chooses the function x (z), agent 2 chooses y (z) and ε is a
random variable with support [−ε̄, ε̄]. Let f (ε) be the density function of ε
and E [ε] = 0.2

Akin to previous chapters, z (ε) is a function whose domain is the support
of ε. The reasons for this are as follows. First, the problem is otherwise
unintelligible: if an ε leads to no z, no x (z) or y (z) can be derived either.
Second, the mapping must be a function as, if there were multiple z’s for
some realisations of ε, a mechanism for picking one of the z’s would be
required to allow play. Rather than add such a mechanism, strategy pairs
giving rise to such a situation are declared inadmissible. This is an ad hoc
treatment, but perhaps no more so than the alternatives.3 Furthermore,
it is consistent with the standard definition of admissibility in differential
games.

As previously, strategies must also be defined over the whole domain,
z ∈ <. Were they not, agents would be unable to form complete conjectures
of others’ play, and therefore not be able to select their own best responses.
Therefore:

Definition 5.1 A pair of strategy functions (x (z) , y (z)) is admissible if
x (z) and y (z) are defined over z ∈ < and if the mapping that they, through
equation 5.1, induce between ε and z is a function with domain [−ε̄, ε̄].

This admissibility requirement is weaker than that used in the differential
game as continuity is not required of the state variable.

This definition yields the following restriction:

Lemma 5.2 An admissible function pair (x (z) , y (z)) produces, through
equation 5.1, an injective z (ε).

Proof. Argue by contradiction. Consider two values of ε, say ε1 and
ε2, producing the same z. The left hand side and first two right hand side
terms of equation 5.1 are the same for both ε1 and ε2 but the last term is
different. This cannot be.

2The restriction on the first moment plays no role beyond determining expected utili-
ties.

3Klemperer and Meyer address this problem by assuming that, “if a market-clearing
price does not exist, or is not unique, then firms earn zero profits... [T]his assumption
ensures that such an outcome will not arise in equilibrium, but the assumption is not an
important constraint on firms’ behavior” [KM89, p.1250].
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Define expectations over realisations of ε. Therefore, an admissible strat-
egy pair (x (z (ε)) , y (z (ε))) yields the pair of expected payoffs

(E [u (x (z (ε))) |y (z (ε))] , E [v (y (z (ε))) |x (z (ε))]) ;

where u (x (ε)) and v (y (ε)) are the objective functions of agents 1 and 2.
Now, for the two agent game, the equilibrium concept is defined as follows:

Definition 5.3 If:

1. (x∗ (z (ε)) , y∗ (z (ε))) is admissible; and

2. E [u (x∗ (z (ε))) |y∗ (z (ε))] ≥ E [u (x (z (ε))) |y∗ (z (ε))] ; and

3. E [v (y∗ (z (ε))) |x∗ (z (ε))] ≥ E [v (y (z (ε))) |x∗ (z (ε))] for all admissi-
ble (x (z (ε)) , y∗ (z (ε))) and (x∗ (z (ε)) , y (z (ε)))

then (x∗ (z (ε)) , y∗ (z (ε))) forms a functional Nash equilibrium (FNE).

5.3 FNE without transfers

Two models are presented here, producing a non-existence and an existence
result, respectively. In both cases, the present approach to agents’ optimisa-
tion problems somewhat resembles that of Groves and Ledyard’s approach
to the optimal allocation of public goods problem [GL77]. As in that paper,
agents here imagine themselves to be choosing the state variable directly as
they consider other agents’ choices to be fixed. Unlike the analysis in that
paper, though, the fixed choices of the other agents are functions rather than
merely points. In contrast to the ‘competitive’ assumption of Groves and
Ledyard, then, agents here are allowed to behave strategically. Another key
difference between the current analysis and that of Grove and Ledyard is
that there is no social planner here to design tax and allocation rules. The
optimal allocation of public goods is therefore not expected in equilibrium.

5.3.1 Non-existence: payoffs linear in control

Non-existence results are presented here. They arise from problems in which
an agent wishes its control to be constant, but is unable to achieve this due
to the uncertainty. First consider a simple case:

Problem 5.4 (linear) Agents 1 and 2 have objective functions

u = −x− (z − δ)2 ; and

v = −y − (z + δ)2 ;
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respectively, where δ is a parameter. Agent 1 solves

max
x(z)

E
[

−x− (z − δ)2
]

; z (ε) = x (z) + y∗ (z) + ε

where y∗ (z) is some fixed play by agent 2. Agent 2 solves

max
y(z)

E
[

−y − (z + δ)2
]

; z (ε) = x∗ (z) + y (z) + ε

where x∗ (z) is some fixed play by agent 1.

Theorem 5.5 There is no FNE in Problem 5.4.

Proof. Substitute the constraint into agent 1’s problem for

max
z(ε)

E
[

y∗ (z)− z − (z − δ)2 + ε
]

.

The maximising variable is now written as z (ε) as, for fixed y∗ (z), selecting
x (z) and z (ε) are equivalent by equation 5.1. The problem may now be
written as

max
z

[

y∗ (z)− z − (z − δ)2
]

; (5.2)

by first moving the uncontrollable ε outside of the maximand and noting
that the expectations operator may be dropped in the absence of stochastic
terms.

As the problem is now deterministic it is solved by some constant z (ε).
Let this constant be ζ so that, by equation 5.1,

ζ = x (ζ) + y (ζ) + ε;

a contradiction. As agent 1 has no optimal strategy, there can be no FNE.

This result generalises to other problems requiring a constant maximum:

Theorem 5.6 Suppose that agent 1’s problem may be written as

max
z(ε)

E [u (y∗ (z) , z, δ) + h (ε)] ;

when its choice variable, x, is replaced by the constraint

z = f (x (z) , y∗ (z) , ε) .

Let the constant ζ solve this problem and implicitly define x∗ according to

ζ = f (x∗ (z (ε)) , y∗ (z (ε)) , ε) ; (5.3)

where y∗ (z (ε)) is some fixed play by agent 2. For ζ not to exist, it is
sufficient that fε (x

∗, y∗, ε) 6= 0 for some realisation of ε.

Proof. As x∗ (ζ) and y∗ (ζ) are constants, a constant ζ, by equation 5.3,
that fε = 0∀ε.
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5.3.2 Existence: payoffs quadratic in control

The following problem resembles that analysed in previous chapters of this
thesis. Previously, the instantaneous objective function was quadratic in
control and state, as here. Then the equation of motion, whose role equation
5.1 plays, was also linear. This one-shot problem may therefore be loosely
interpreted as a limit case of the previous differential games when agents
are perfectly patient and z does not decay.

Problem 5.7 (quadratic) Agents 1 and 2 have objective functions

u = −x2 − (z − δ)2 ; (5.4)

v = −y2 − (z + δ)2 ; (5.5)

respectively, where δ is a parameter. Agent 1 solves

max
x(z)

E
[

−x2 − (z − δ)2
]

; z (ε) = x (z) + y∗ (z) + ε

where y∗ (z) is some fixed play by agent 2. Agent 2 solves

max
y(z)

E
[

−y2 − (z + δ)2
]

; z (ε) = x∗ (z) + y (z) + ε

where x∗ (z) is some fixed play by agent 1.

Substituting the constraint into agent 1’s problem produces

max
z(ε)

E
[

−2z2 + 2y∗z + 2εz − (y∗)2 − 2εy∗ − ε2 + 2δz − δ2
]

. (5.6)

The multiplicative terms in ε prevent this problem being rewritten as in
Theorem 5.5 (attempts to use the constraint to remove the ε terms merely
re-introduce the x (z) terms). Problem 5.7 may therefore have a solution.
The multiplicative terms also prevent removal of the expectations operator
as was done in equation 5.2, above. The problem therefore becomes

max
z(ε)

∫ ε̄

−ε̄

[

−2z2 + 2y∗z + 2εz − (y∗)2 − 2εy∗ − ε2 + 2δz − δ2
]

f (ε) dε.

(5.7)
Again, regard agent 1 as controlling z (ε) when y∗ is fixed. A necessary
condition for a maximum may thus be found by differentiating with respect
to z:

∫ ε̄

−ε̄

[

−4z + 2y∗′z + 2y∗ + 2ε− 2y∗y∗′ − 2εy∗′ + 2δ
]

f (ε) dε = 0. (5.8)

The injective relationship demonstrated in lemma 5.2 means that agent
1’s ability to condition its play on z is equivalent to an ability to condition
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play on ε. Expected utility maximisation and pointwise maximisation by
realisations of ε are therefore equivalent. Necessary condition 5.8 must thus
hold for all ε as there is otherwise an ε̂ ∈ [−ε̄, ε̄] such that z (ε̂) is not a
stationary point. Therefore, as an extremum requires that the contents of
the square bracketed term in equation 5.8 equal zero for all ε:

y∗′ [z − y∗ − ε] + y∗ − 2z + ε+ δ = 0; or

y∗′ = 1 +
z − δ

x∗
. (5.9)

Similarly, the first order necessary condition for agent 2 in Problem 5.7
is

x∗′ = 1 +
z + δ

y∗
. (5.10)

Having implicitly assumed that optimal strategies are elements of C1,
equations 5.9 and 5.10 make them elements of C∞ as well. These equations
may not possess closed form solutions. While numerical methods could be
used to solve them, this section instead examines various special cases, in
the hope of finding more tractable first order conditions. In particular, after
deriving second order conditions, linear solutions and non-linear solution in
symmetric cases (in which δ = 0) are explored.

Second order conditions

Equations 5.9 and 5.10 provide necessary conditions for extrema rather than
maxima specifically. Now consider sufficient conditions for maxima. Differ-
entiating the square bracketed term in equation 5.8 with respect to z a
second time produces the requirement that

∫ ε̄

−ε̄

[

−2 + 2y∗′ + (z − y∗ − ε) y∗′′ −
(

y∗′
)2
]

f (ε) dε < 0; or

∫ ε̄

−ε̄

[

−2 + 2y∗′ + x∗y∗′′ −
(

y∗′
)2
]

f (ε) dε < 0.

As z (ε) must maximise for any realisation of ε ∈ [−ε̄, ε̄], a necessary condi-
tion for a maximum is that

−2 + 2y∗′ + x∗y∗′′ −
(

y∗′
)2 ≤ 0. (5.11)

For agent 2, the equivalent expression to equation 5.6 is

max
z(ε)

E
[

−2z2 + 2x∗z + 2εz − (x∗)2 − 2εx∗ − ε2 − 2δz − δ
]

.

The requirement that its second derivative with respect to z be negative
produces

−2 + 2x∗′ + y∗x∗′′ −
(

x∗′
)2 ≤ 0. (5.12)
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To simplify equations 5.11 and 5.12, differentiate equations 5.9 and 5.10
for

y∗′′ =
1

x∗
− z − δ

(x∗)2
x∗′;

x∗′′ =
1

y∗
− z + δ

(y∗)2
y∗′.

These allow equations 5.11 and 5.12 to be written as

z − δ

x∗

{

1 +
z − δ

x∗
+
z + δ

y∗

}

≥ 0; and (5.13)

z + δ

y∗

{

1 +
z − δ

x∗
+
z + δ

y∗

}

≥ 0. (5.14)

It is therefore necessary for a maximum that, for all z (ε) with ε ∈ [−ε̄, ε̄],
z−δ
x
, z+δ

y
and

{

1 + z−δ
x

+ z+δ
y

}

have the same sign. By defining

ξ ≡ z − δ

x
; and

η ≡ z + δ

y
;

this can be expressed in (ξ, η) space as requiring either that ξ, η ≥ 0 or that
ξ, η ≤ 0 with ξ + η ≤ −1. These two conditions define disjoint regions in
(ξ, η) space.

Lemma 5.8 It must be that sign [x∗ (z)] = sign [y∗ (z)] ∀ z /∈ (−δ, δ) and
that sign [x∗ (z)] 6= sign [y∗ (z)]∀ z ∈ (−δ, δ).

Proof. This follows from the numerators in first terms of equations 5.13
and 5.14.

Therefore agents 1 and 2 ‘pull in opposite directions’ when z ∈ (−δ, δ)
and in the same direction otherwise.

As equations 5.9 and 5.10 may not have closed form solutions, the linear
and symmetric special cases mentioned above are now examined.

Linear solutions

Lemma 5.9 Problem 5.7 has only two linear solutions. These correspond
to

x∗ = (z − δ) a;

y∗ = (z + δ) a;

where a is a constant implicitly defined by

a2 − a− 1 = 0. (5.15)
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Denote the roots of equation 5.15 by a+ > 0 > a−. There is thus a form
of symmetry between the agents’ strategies: x∗ is the function of z − δ that
y∗ is of z + δ.

Proof. The general formulation for linear strategies of z is

x = az + b; and

y = cz + d;

where a, b, c and d are real constants. As any extremum of Problem 5.7 must
satisfy equations 5.9 and 5.10, any linear solution must satisfy

a = 1 +
z + δ

cz + d
;

c = 1 +
z − δ

az + b
.

Rearrangement produces

(ac− c− 1) z = d (1− a) + δ;

(ac− a− 1) z = b (1− c)− δ.

As these must be satisfied for all z, c = a and a2 − a− 1 = 0. Furthermore,
b = −d = δ

1−a , so that

x = az +
δ

1− a
=

(

z +
δ

a− a2

)

a = (z + δ) a; and

y = (z − δ) a.

As both roots of a satisfy the second order conditions of equations 5.13 and
5.14, these are maxima.

Not all solutions to the differential equations 5.9 and 5.10 are solutions
to the original maximisation Problem 5.7. The linear solutions are, though:

Theorem 5.10 The only linear strategies to support a FNE in Problem 5.7
when strategies are restricted to be linear are the two pairs of symmetric
strategies identified in Lemma 5.9.

Proof. Substituting the expression for y∗ from Lemma 5.9 into the
maximand in agent 1’s problem (equation 5.6) produces

max
z(ε)

E
[(

2a− 2− a2
)

z2 + 2 ((aδ + ε) (1− a) + δ) z − a2δ2 − 2aδε− ε2 − δ
]

.

By Lemma 5.9, x∗ = (z − δ) a is an extremum of the maximand. If the
maximand is concave in z, then x∗ is a maximum given y∗ and the result
holds. Concavity requires that the coefficient of z2 be negative. When a is
defined as in Lemma 5.9 the coefficient is − 1

2

{

5±
√
5
}

< 0.
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There are no other linear candidates as Lemma 5.9 identified all linear
candidate solutions to Problem 5.7.

That there are two linear solutions is somewhat troubling as Chapter
2 had only found one linear solution to its differential game. This likely
reflects the loose relationship between the previous differential games and
the present model.

Therefore:

Theorem 5.11 The expected payoffs to the linear equilibria in quadratic
Problem 5.7 are

E [u] = E [v] = −
(

1 + a2
)

(

δ2 +
1

5
E
[

ε2
]

)

.

Proof. Substitution of the linear strategies into the objective functions
produces

E [u] = −
(

1 + a2
) (

δ2 − 2δE [z] + E
[

z2
])

; and

E [v] = −
(

1 + a2
) (

δ2 + 2δE [z] + E
[

z2
])

.

Equation 5.1, which defined the state variable, and the linear strategies
allow calculation of z = ε

1−2a . Therefore E [z] = 0 and, by equation 5.15,

E
[

z2
]

= 1
5E
[

ε2
]

. The result follows.
Although the downward sloping linear path yields a higher payoff than

does the upward sloping one, the linear solutions are similar in the following
respect. The objective functions are such that both agents would like to set
their control to zero and would like z = 0. Their strategies are therefore
chosen to offset the consequences of a realisation of ε 6= 0. Both strategies
produce the same variance for z, a variance less than that of ε.

Symmetric agents and play

Two special cases of symmetric play are now considered. In the first, Prob-
lem 5.7 is restricted by setting δ = 0 and requiring that x (z) = y (z), so
that agents play symmetrically. This second restriction is removed in the
next section.

In the case of symmetric play, though, first order conditions 5.9 and 5.10
reduce to

x∗′ = 1 +
z

x∗
. (5.16)

Lemma 5.9 provides the linear solutions to equation 5.16 as special cases;
these are plotted in Figure 5.1. Representative non-linear solutions are
drawn by noting that x = −z defines the horizontal isocline (x∗′ = 0) while
x∗ = 0 defines the vertical (x∗′ = ±∞).

Now ask which solutions to equation 5.16 support FNE. As the linear
solutions are addressed by Theorem 5.10, they are FNE.
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z

x x = a+z

x = a−z

x = −z

x = −2z

x = 1
2 (z − varepsilon)

Figure 5.1: Solutions to equation 5.16

Consider now non-linear solutions to equation 5.16. One requirement is
that candidate solutions be maxima. As δ = 0 and x∗ = y∗ in the symmetric
cases considered here the second order condition 5.11 becomes

−2
[

(

1− x∗′
)2 − x∗x∗′′ + 1

]

≤ 0. (5.17)

As linear solutions set x∗′′ = 0 it follows that any linear solution to equation
5.16 satisfies the second order condition for a maximum. A simpler condition
than that in equation 5.17 may be found by setting δ = 0 and x = y in
equation 5.13’s version of the second order condition:

(2z + x∗) z ≥ 0. (5.18)

The z = 0 and x = −2z lines therefore divide (z, x) space into four regions,
two satisfying the second order conditions and two violating them.

Turn now to the two sorts of non-linear solutions to equation 5.16 indi-
cated in Figure 5.1.

Lemma 5.12 The symmetric non-linear solutions to equation 5.16 that
cross x = 0 are not admissible strategy functions.
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Proof. These x (z) = y (z) are neither defined over all z ∈ < nor are they
functions. Such strategy pairs therefore violate the definition of admissible
function pairs.

Lemma 5.13 The symmetric non-linear solutions to equation 5.16 that
cross z = 0 are not admissible strategy functions.

Proof. Under symmetry, conditions 5.13 and 5.14 reduce to

z

x∗

(

2z + x∗

x∗

)

≥ 0;

or (2z + x∗) z ≥ 0. Solutions crossing the z = 0 locus therefore violate these
conditions in doing so.

The previous two lemmata imply:

Theorem 5.14 There are no non-linear symmetric strategy pairs that sup-
port a FNE in Problem 5.7.

The proof follows from recognising that no non-linear candidates remain.
The preceding results may be generalised slightly. If δ 6= 0 but both

agents had the identical Euler conditions

x∗′ = 1 +
z + δ

x∗
;

then similar results to those above would follow. There are still two linear
solutions conforming to x∗ = az + b but, while a is still 1

2

{

1±
√
5
}

z, b =
δ

a−1 . This simply translates the diagram in Figure 5.1.

Symmetric agents and asymmetric play

Continue to restrict Problem 5.7 by setting δ = 0, so that agents are symmet-
ric, but now allow x (z) 6= y (z), so that they may still play asymmetrically.4

The change of variables
ξ (z) ≡ z

x
;

η (z) ≡ z
y
;

(5.19)

then allow

x′ =
1− ξ′x

ξ
;

y′ =
1− η′y

η
;

4Klemperer and Meyer [KM89, Proposition 3] have a result demonstrating the non-
existence of asymmetric equilibria. As their proof relies on the behaviour of their differ-
ential equation system and on their assumptions about behaviour when firm profits are
negative, the result does not apply directly to the present situation.
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so that the first order conditions in equations 5.9 and 5.10 may be written
as

η′ = η(1−η−ξη)
z

;

ξ′ = ξ(1−ξ−ξη)
z

.
(5.20)

By the usual technique this produces

dη

dξ
=
η (1− η − ξη)

ξ (1− ξ − ξη)
. (5.21)

One solution to this is ξ = η, which becomes x (z) = y (z) when the change
of variables is reversed. This case of symmetric play has already been con-
sidered.

η

ξ

(−a−,−a−)

(−a+,−a+)

Figure 5.2: Phase diagram in (ξ, η) space

Equation 5.21 allows a phase diagram to be plotted in (ξ, η) space. This
is done in Figure 5.2. The flowlines indicate five stationary points at which
ξ′ = η′ = 0:

S ≡ {(ξ, η) | (ξ, η) ∈ {(0, 0) , (0, 1) , (1, 0) , (−a−,−a−) , (−a+,−a+)}} .

The curved dashed lines represent the horizontal and vertical isoclines, those
points at which dη

dξ
= 0 or dη

dξ
= ±∞, respectively.
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The downward sloping diagonal dashed line is ξ + η = −1, one of the
boundaries for the second order conditions of equations 5.13 and 5.14. These
conditions are satisfied in the first quadrant and in the third below the
diagonal line.

The linear solutions found by Lemma 5.9 are now the points (ξ, η) =
(−a,−a), where a = {a−, a+}. These lie at the two intersections of the
horizontal and vertical isoclines; they may be seen to satisfy the second
order conditions. By equation 5.21, asymmetric paths through them must
satisfy either dη

dξ
= ±1. To understand why, note that, as these points are

approached, ξ ≈ η and
dη

dξ
=
η′

ξ′ ≈
ξ′

η′
;

so that (ξ′)2 = (η′)2 as well.

The interpretation of a path in (ξ, η) space is slightly more subtle than
usual. In (x, y, z) space, any z coordinate can be assigned to any (x, y)
pair. Transformation into (ξ, η) space means that any (ξ, η) is consistent
with any non-zero and finite z (the case of z ∈ {0,±∞} is addressed below).
Thus, each path in (ξ, η) space represents an infinite number of paths in
(x, y, z) space, the paths being indexed by non-zero and finite z. The same
(ξ, η) point may therefore represent both (ξ (z) , η (z)) and (ξ (−z) , η (−z))
for any non-zero and finite z. When z < 0, though, the flowlines are taken
to indicate decreasing values of z.5

The following lemmata reveal that only a small number of points in
(ξ, η) space are consistent with z ∈ {0,±∞}. As admissible x (z) and y (z)
must be defined for all z ∈ <, it is necessary that candidate FNE strategies
contain these points.

Lemma 5.15 Candidate FNE solutions in (ξ, η) space must contain an el-
ement of S.

Proof. Admissible strategies must be defined for z = 0. It is shown
that the only (ξ, η) points consistent with z = 0 are those in S.

When z = 0 but x, y 6= 0, the change of variables defined in equations
5.19 implies (ξ, η) = 0, an element of S. When z = x = 0 but y 6= 0,
L’Hôpital’s rule and the first order condition in equation 5.10 imply that
ξ = 1

x′
= y

y+z = 1 while η = 0, as above. This produces (ξ, η) = (1, 0),
another element of S. Symmetry of ξ and η produces the third element of
S when y = z = 0 but x 6= 0.

When x = y = z = 0 L’Hôpital’s rule again provides ξ = 1
x′

and η = 1
y′
.

But as x = y it must be that ξ = η so that x′ = y′ as well. Therefore, first
order conditions 5.9 and 5.10 become x′ = 1 + 1

x′
so that x′ = a. Hence

5Replacing z with −z such that ξ (z) = ξ (−z) and η (z) = η (−z) changes the signs in
equations 5.20 but not in equation 5.21.
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(ξ, η) =
(

1
a
, 1
a

)

which, by definition of a, produces the final two elements of
S, (−a,−a).

Similarly, by considering those points consistent with infinite z:

Lemma 5.16 Candidate FNE solutions in (ξ, η) space must satisfy one of
the following conditions:

1. either one of ξ or η becomes infinite as z does; or

2. (ξ, η)→ (−a,−a) as z becomes infinite.

Proof. Admissible strategies must be defined for z = ±∞. For any
finite x and y the change of variables in equations 5.19 means that infinite
z implies infinite ξ and η.

When x is finite but y infinite again ξ → ±∞. Now, though, η = z
y
so

that L’Hôpital’s rule is invoked for

η =
1

y′
=
(

1 +
z

x

)−1
=

1

1 + ξ
= 0.

A similar result holds when x is infinite but y finite.
The preceding established the first condition of the lemma; the second

is now established. When x and y are both infinite, L’Hôpital’s rule is again
used. As above

η =
1

1 + ξ
and ξ =

1

1 + η
;

so that η + ξη = ξ + ξη = 1. Therefore ξ = η and 1 − ξ − ξ2 = 0 so that
(ξ, η) = (−a,−a).

These lemmata shed some light on the two linear solutions to Problem
5.7 found by Lemma 5.9: the points (ξ, η) = (−a,−a) are the only points
in (ξ, η) space that are consistent with all z ∈ <. Furthermore, if z is finite
and non-zero at either of these points, ξ ′ = η′ = 0 and the ‘path’ necessarily
remains at the point.

These lemmata identify various families of paths that are defined for all
z ∈ <. As candidate strategies must also avoid regions in (ξ, η) space that
violate the second order conditions (the second and fourth quadrants and
the third above 1− ξ − η = 0), FNE strategies may only be taken from the
following families:

D1 the two linear FNE;

D2 the continuum of paths converging on (−a−,−a−) from above;

D3 the continuum of paths converging on (−a−,−a−) from the origin;

D4 the two paths converging on (−a−,−a−) from (0, 1) and (1, 0), respec-
tively; and
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D5 the two paths diverging asymmetrically from (−a+,−a+).

The following lemmata eliminate all but the D1 family from considera-
tion.

Lemma 5.17 None of the D2 paths support FNE.

Proof. These paths cannot be parameterised by z ∈ <. Suppose, for
example, that z = −∞ at (ξ, η) = (∞,∞). The flowlines prevent (ξ, η)
returning to (−a−,−a−) as z increases to zero. The reverse also holds: if
z = ∞ at (ξ, η) = (∞,∞) the flowlines again prevent (ξ, η) returning to
(−a−,−a−) as z increases to zero.

The next two lemmata use a similar argument. They find that the
paths considered either behave as above or become discontinuous (and are
therefore not solutions to the original differential equations).

Lemma 5.18 None of the D3 paths support FNE.

Proof. As (ξ, η) = 0 is consistent with z = 0, but not z = ±∞,
the path considered contains the points (ξ (−∞) , η (−∞)) = (−a−,−a−),
(ξ (0) , η (0)) = 0 and (ξ (∞) , η (∞)) = (−a−,−a−). By Lemma 5.15, both
x (0) and y (0) are non-zero. In (ξ, η) space, (ξ (ẑ) , η (ẑ)) = (ξ (−ẑ) , η (−ẑ))
for any given x̂. Therefore, by the change of variables, z

x(z) = ξ (z) =

ξ (−z) = −z
x(−z) so that x (z) = −x (−z). As x (0) 6= 0 (and y (0) 6= 0) this

is discontinuous at z = 0 and therefore does not satisfy equations 5.9 and
5.10, which are continuous at z = 0.

Lemma 5.13 and Figure 5.1, which addressed the case of symmetric
play, illustrate more clearly the argument above: x (z) = −x (−z) implies
a symmetric solution jumping from one path to its mirror image in the
horizontal axis at z = 0. Those paths continuous at x (0) may also be seen
in Figure 5.1.

Lemma 5.19 Neither of the D4 paths support FNE.

Proof. The proof here differs from that of Lemma 5.18 in one respect:
x (0) is still distinct from zero, but y (0) = 0. L’Hôpital’s rule, though, shows

that x′ (0) = 1+ 1
y′(0) . As y′ (0) = 1+ z

x(0) =
x(0)+z
x(0) = 1, x′ (0) = 2. As x′ (0)

is well defined, the solution must still be continuous. The D4 paths are not.

Lemma 5.20 Neither of the D5 paths support FNE.

Proof. Consider D5 paths at ξ = η. Here x = y = z = 0 so that the
ODEs may be written

x′ (0) = 1 +
1

y′ (0)
and y′ (0) = 1 +

1

x′ (0)
.
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Multiplying both by their denominators yields x′ (0) y′ (0) = 1 + x′ (0) =
1 + y′ (0) so that x′ (0) = y′ (0), a symmetric solution. As the D5 paths are
not symmetric, they do not satisfy the original differential equations.

The x′ = y′ that does satisfy the above is a, as expected.

Having eliminated all candidates:

Theorem 5.21 There are no non-linear FNE of Problem 5.7 when δ = 0.

Symmetric linear solutions to this problem are more efficient than are
asymmetric linear solutions. When play is symmetric, the agents split the
task, and quadratic cost, of offsetting the ε shocks which cause z to deviate
from zero. While this is true, efficiency arguments do not necessarily provide
insight into game play.

One of the interesting features of the theorem is that it holds for any
non-degenerate distribution of ε. This contrasts to the finding in Klemperer
and Meyer [KM89]. There the support of ε influences the set of FNE by
altering the zone over which second order conditions must hold.

5.4 The Pareto frontier

Before asking whether transfers increase expected utility, the Pareto frontier
is traced for Problem 5.7. Weight objective functions 5.4 and 5.5 by φ and
(1− φ), respectively, so that social welfare is

w = φu+ (1− φ) v

= −φx2 − φ (z − δ)2 − (1− φ) y2 − (1− φ) (z + δ)2 .

As the planner maximises social welfare subject to equation 5.1, the state
variable, it must

max
x,y

E [w]

= max
x,y

∫ ε̄

−ε̄

[

−φ
(

2x2 + y2 + δ2 + ε2 + 2xy + 2ε (x+ y)− 2δ (x+ y + ξ)
)

− (1− φ)
(

x2 + δ2 + ε2 + 2 (y + ε) (x+ y) + 2δ (x+ y + ε)
)]

f (ε) dε.

Differentiating with respect to z, as above, is possible as the social planner
controls z (ε). This, though, only produces a single first order condition.
Therefore continue, instead, to regard the choice variables as x and y. As the
gradients in these must be zero for all realisations of ε, necessary conditions
are derived by differentiating the square bracketed expression to obtain the
Euler conditions.
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Differentiating with respect to x produces

(φ+ 1)x∗ + y + ε+ (1− 2φ) δ = 0;

x∗ =
2φ− 1

φ
δ − 1

φ
z

=
1

φ
[(2φ− 1) δ − z] .

Similarly, differentiation with respect to y yields

y∗ =
1

1− φ
[(2φ− 1) δ − z] .

By equation 5.1, then,

z =
(2φ− 1) δ − z

φ (1− φ)
+ ε;

z =
(2φ− 1) δ + φ (1− φ) ε

φ (1− φ) + 1
.

This allows the closed form solutions

x∗ =
(1− φ) (2φ− 1) δ − (1− φ) ε

φ (1− φ) + 1
;

y∗ =
φ (2φ− 1) δ − φε

φ (1− φ) + 1
.

Substitution using the assumption that E [ε] = 0 produces the individual
payoffs:

E [u] = −(1− φ)2
(

1 + φ2
)

[φ (1− φ) + 1]2
[

5δ2 + E
[

ε2
]]

; and (5.22)

E [v] = −
φ2
(

1 + (1− φ)2
)

[φ (1− φ) + 1]2
[

5δ2 + E
[

ε2
]]

. (5.23)

Together equations 5.22 and 5.23 define a curve parameterised by φ. In
(E [u] , E [v]) space, the curve is concave and symmetric about E [u] = E [v].
Furthermore, it is tangent to the horizontal axis (E [v] = 0) at φ = 0 and to
the vertical axis (E [u] = 0) at φ = 1.

In the case of symmetric agents (δ = 0, φ = 1
2), expected payoffs simplify

to

E [u] = E [v] = −1

5
E
[

ε2
]

. (5.24)

As the problem has reduced to the concave

min
z(ε)

∫ ε̄

−ε̄

[

5

4
z2 − 1

2
εz +

1

4
ε2
]

f (ε) dε;

the first order conditions are sufficient.
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5.4.1 Comparison with the game

As expected, the payoffs to the planned outcome in equation 5.24 are greater
than those to the game (presented in Theorem 5.11).

The case of symmetric agents (δ = 0, φ = 1
2) also allows comparison of

the responsiveness of the optimal controls, ∂x
∂ε
. In the game, x = za and z =

ε
1−2a so that ∂x

∂ε
= a

1−2a =
{

−1+
√
5

2
√
5
, 1−

√
5

2
√
5

}

. In the planned environment,

x = −2z and z = 1
5ε. Therefore ∂x

∂ε
= −2

5 , intermediate to those of the
game.

In all cases, ∂x
∂ε

< 0, which has a sensible interpretation: in the symmetric
case, both agents wish to set their controls to zero and would like the state
to be zero. Without shocks, this could be achieved; therefore shocks are to
be counteracted. That the response of the planned outcome is intermediate
suggests that the game responses reflect the failure of the game to attain
the planned outcome.

5.5 FNE with transfers

Now augment agents’ (symmetric) objective functions to define a new prob-
lem:

Problem 5.22 (transfer) Agents 1 and 2 have objective functions

u = −x (z)2 − z2 − r (y) + s (x) ;

v = −y (z)2 − z2 + r (y)− s (x) ;

where x (z) and y (z) are as above but r (y) ≥ 0 is now a transfer controlled
by agent 1 and s (x) ≥ 0 one controlled by agent 2.

This formulation is therefore one of transferable utility. Clearly this does
not correspond as closely to the motivating problem as would a model of
transfers in consumption goods. The formulation is adopted, though, for
analytical tractability. Nevertheless, x and y are referred to as emission
functions and r and s as transfer functions. It is not clear what effect such
linear transfers have on the existence of FNE.

Extending the previous approach, so that agent 1 chooses an x (z) and
a r () to maximise E [u] against 2’s fixed y (z) and s (), no longer suffices: a
fixed y∗ (z) only responds to changes in z. If z is not influenced by transfers
then neither are emissions. Two approaches therefore present themselves as
possible. The first involves specifying x (r − s, z) and y (r − s, z). Making
emissions a function of the transfers is appealing: it regards the quantity
possessed of the transferable resource as a second payoff relevant state vari-
able. Unfortunately, this approach involves PDEs. For this reason it is not
pursued.
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The second involves considering a three stage game in fictional time in
which agents first announce and commit to their transfer functions. They
next calculate and commit to optimal x () and y (); finally, ε is realised.
This is, of course, an ad hoc formulation, converting the game into a form
of Stackelberg problem. This formulation also raises questions about the
commitment technology assumed. Nevertheless, this approach is pursued as
an initial attempt at the problem.

First, though, what transfers are required to support the first best?

5.5.1 Implementing the symmetric first best

The calculations in Section 5.4 show that the first best is supported by
emissions of the form x∗ = y∗ = −2z when agents are symmetric. As these
are not a FNE of the game without transfers, it is now asked what transfers
are capable of supporting these emission functions. The transfer functions
are not here required to support an equilibrium.

In the second stage, agents regard the transfers r (y)∗ , s (x)∗ and the
other’s x or y as fixed. Agent 1 therefore must

max
z

E
[

−x (z)2 − z2 − r∗ (y∗ (z)) + s∗ (x (z))
]

s.t. z = x (z) + y∗ (z) + ε
y∗ = −2z;

or

max
z

E
[

− (3z − ε)2 − z2 − r∗ (−2z) + s∗ (3z − ε)
]

.

This has first order conditions6

−6 (3z − ε)− 2z + 2r∗′ (−2z) + 3s∗′ (3z − ε) = 0.

Implementing the first best for symmetric agents requires that x∗ = y∗ =
−2z and r∗ = s∗. This allows simplification of the above to

5r∗′ (y) = 2z + 6y

= 5y;

so that

r∗ (y) =
1

2
y2 + c. (5.25)

The non-negativity requirement will be satisfied for any c ≥ 0. As c > 0
simply imposes an additional cost on the transferring agent without altering
the recipient’s incentives, assume that

c = 0. (5.26)

6As r (y) , s (x) ≥ 0 these may be non-differentiable at certain points. The solutions
that are eventually derived are differentiable for all z.
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This is a counter-intuitive form for a transfer function to have, paying out
as the other agent’s emissions deviate from the ideal of y = 0.

Expected utility may now be calculated. The functional forms set z = 1
5ε

so that x∗ = y∗ = −2
5ε and r∗ = s∗ = − 2

25ε
2. Therefore

E [u] = E [v] = − 4

25
E
[

ε2
]

− 1

25
E
[

ε2
]

− 2

25
E
[

ε2
]

+
2

25
E
[

ε2
]

= −1

5
E
[

ε2
]

;

the same as the planned outcome. The transfer function in equation 5.25
therefore must maximise, rather than minimise, the objective functions.

5.5.2 FNE in the three stage game

It is naturally of interest to ask whether the above emissions and transfer
scheme is an equilibrium. Noting that it has linear emissions and quadratic
transfer functions, functions are restricted to these classes in the following
section. More general transfer functions are considered after that. These
sections find that, when functions are so restricted, there is an FNE with
linear emissions and quadratic transfers (although not the first best above).
The final section shows that, when emissions are constrained to be linear,
the optimal transfers are quadratic but conjectures that the linear-quadratic
result does not generally hold when both functions are not constrained.

Linear emissions and quadratic transfers

Equilibria in linear emissions functions, x (z) = ξz and y (z) = ηz, and
quadratic transfer functions, r (y) = ρy2 and s (x) = σx2 (non-negativity
requires that ρ, σ ≥ 0) are now sought. This is clearly restrictive.

The second stage In the second stage, agents must

max
x

{

E
[

−x2 − z2 − ρ∗ (y∗)2 + σ∗x2
]

s.t. z = x+ y∗ + ε
}

;

max
y

{

E
[

−y2 − z2 + ρ∗y2 − σ∗ (x∗)2
]

s.t. z = x∗ + y + ε
}

;

or

max
z

E
[

(σ∗ − 1) (z − y∗ − ε)2 − z2 − ρ∗ (y∗)2
]

;

max
z

E
[

(ρ∗ − 1) (z − x∗ − ε)2 − z2 − σ∗ (x∗)2
]

.

These problems have first order conditions

y′ (z) [(σ − 1)x (z) + ρy (z)] = (σ − 1)x (z)− z;

x′ (z) [(ρ− 1) y (z) + σx (z)] = (ρ− 1) y (z)− z.
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As x and y are restricted to linear strategies, these necessary conditions
simplify to

ρη2 + (σ − 1) ξη − (σ − 1) ξ + 1 = 0; and (5.27)

σξ2 + (ρ− 1) ξη − (ρ− 1) η + 1 = 0; (5.28)

when z 6= 0. Unfortunately, equations 5.27 and 5.28 produce lengthy ex-
pressions for ξ (ρ, σ) and η (ρ, σ) that are not amenable to interpretation.
Note that (ξ = η = −2)⇒

(

ρ = σ = 1
2

)

, the first best discovered in Section
5.5.1.

The second order conditions require that

(σ∗ − 1)
[

(

1− y∗′
)2 − (z − y∗ − ε) y∗′′

]

− 1− ρ∗
[

(

y∗′
)2

+ y∗y∗′′
]

≤ 0; and

(ρ∗ − 1)
[

(

1− x∗′
)2 − (z − x∗ − ε)x∗′′

]

− 1− σ∗
[

(

x∗′
)2

+ x∗x∗′′
]

≤ 0;

respectively. The functional form restrictions adopted here reduce these to

(σ − 1) (1− η)2 − 1− ρη2 ≤ 0; and (5.29)

(ρ− 1) (1− ξ)2 − 1− σξ2 ≤ 0. (5.30)

The first stage Consider now the problem facing agents in the first stage.
Let ξ (ρ, σ) and η (ρ, σ) be candidate best response correspondences, there-
fore solving equations 5.27 and 5.28. Given these, it is necessary that
∂E[u]
∂ρ
|σ∗ = ∂E[v]

∂σ
|ρ∗ = 0. Working with agent 1,

E [u] = E
[

−ξ2 (ρ, σ) z2 − z2 − ρη2 (ρ, σ) z2 + σξ2 (ρ, σ) z2
]

, (5.31)

where

z =
ε

1− ξ (ρ, σ)− η (ρ, σ)
.

Differentiating with respect to ρ and assuming that 1 − ξ − η 6= 0 then
produces a necessary condition for the first stage,

0 = (1− ξ − η)
[

−2ξξρ − η2 − 2ρηηρ + 2σξξρ
]

+2 (ξρ + ηρ)
[

(σ − 1) ξ2 − 1− ρη2
]

. (5.32)

The equivalent expression for agent 2 is

0 = (1− ξ − η)
[

−2ηησ − ξ2 + 2ρηησ − 2σξξσ
]

+2 (ξσ + ησ)
[

(ρ− 1) η2 − 1− σξ2
]

. (5.33)

Partial differentiation of equations 5.27 and 5.28 with respect to ρ and
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σ produces








2ρη + (σ − 1) ξ (σ − 1) (η − 1) 0 0
0 0 2ρη + (σ − 1) ξ (σ − 1) (η − 1)

(σ − 1) (ξ − 1) 2σξ + (ρ− 1) η 0 0
0 0 (σ − 1) (ξ − 1) 2σξ + (ρ− 1) η









×
[

ηρ ξρ ησ ξσ
]′

=
[

−η2 ξ (1− η) η (1− ξ) −ξ2
]′
;

so that, when the 4× 4 matrix is invertible,

∆
[

ηρ ξρ ησ ξσ
]′

= −









η
[

(σ + 1) ξη + (ρ− 1) η2 + (σ − 1) (ξ + η − 1)
]

(ξ − 1)
[

(ρ+ 1) η2 + (σ − 1) ξη
]

(η − 1)
[

(σ + 1) ξ2 + (ρ− 1) ξη
]

ξ
[

(ρ+ 1) ξη + (σ − 1) ξ2 + (ρ− 1) (ξ + η − 1)
]









;

(5.34)

where

∆ ≡ 2
[

(ρη + σξ)2 − ρη2 − σξ2
]

+ (ρσ − ρ− σ + 1) (ξ + η − 1) .

Agent 1’s second order conditions now require that

∂2E [u]

∂ρ2
= E

{

2
[

z2ρ + zzρρ
] [

(σ − 1) ξ2 (ρ, σ)− 1− ρη2 (ρ, σ)
]

+2zzρρ [2 (σ − 1) ξξρ − 2ρηηρ]

+2zzρρ
[

−2ξξρ − η2 − 2ρηηρ + 2σξξρ
]

+2z2
[

σ
(

ξ2ρ + ξξρρ
)

−
(

ξ2ρ + ξξρρ
)

− 2ηηρ − ρ
(

η2ρ + ηηρρ
)]}

≤ 0;

where

zρ = ε (ξρ + ηρ) [1− ξ (ρ, σ)− η (ρ, σ)]−2 ;

zρρ = ε
{

(ξρρ + ηρρ) [1− ξ (ρ, σ)− η (ρ, σ)]−2

+2 (ξρ + ηρ)
2 [1− ξ (ρ, σ)− η (ρ, σ)]−3

}

;

ξρρ =
ξ2ρ

1− ξ
+

(1− ξ)
[

η2 + 2 (ρ+ 1) ηηρ + (σ − 1) (ξρη + ξηρ)
]

∆(ρ, σ)

− ξρ
∆(ρ, σ)

∆ρ;

ηρρ =
ηρ∆ρ

∆
−
η2ρ
η

−η
[

(σ + 1) ξρη + ξηρ + η2 + 2 (ρ− 1) ηηρ + (σ − 1) (ξρ + ηρ)
]

∆
;

∆ρ = 2
[

2 (ρη + σξ) (η + ρηρ + σξρ)− η2 − 2ρηηρ − 2σξξρ
]

+(σ − 1) (ξ + η − 1) + (ρσ − ρ− σ + 1) (ξρ + ηρ) .
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As E
[

ε2
]

≥ 0, this reduces to

[

3 (ξρ + ηρ)
2 + (ξρρ + ηρρ) [1− ξ − η]

]

[

(σ − 1) ξ2 − 1− ρη2
]

+
{

(ξρρ + ηρρ) [1− ξ − η] + 2 (ξρ + ηρ)
2
}

[

4 (σ − 1) ξξρ − 4ρηηρ − η2
]

+ [1− ξ − η]2
[

(σ − 1)
(

ξ2ρ + ξξρρ
)

− 2ηηρ − ρ
(

η2ρ + ηηρρ
)]

≤ 0;
(5.35)

when 1− ξ − η 6= 0.
Symmetric conditions exist for agent 2’s problem.

Lemma 5.23 The symmetric first best, as identified in Section 5.5.1, does
not form an FNE of Problem 5.22.

Proof. Substitution of ρ = σ = 1
2 and ξ = η = −2 into equations 5.27,

5.28, 5.32 and 5.33 solves the first two but not the second two.

Symmetric solutions Consider situations in which σ = ρ and η = ξ. In
these cases the system of equations 5.27, 5.28, 5.32 and 5.33 can be reduced
to two equations. The first order conditions of the second stage reduce to

(2ρ− 1) ξ2 − (ρ− 1) ξ + 1 = 0. (5.36)

The first order conditions for the first stage become

2
[

(2ρ− 1) ξ2 − (ρ− 1) ξ + 1
]

ξρ
+2
[

(1− 2ρ) ξ2 + ρξ + 1
]

ηρ + (1− 2ξ) ξ2 = 0.

As the first term of this is identically zero when equation 5.36 is satisfied,
this reduces further to

2
[

(1− 2ρ) ξ2 + ρξ + 1
]

ηρ + (1− 2ξ) ξ2 = 0. (5.37)

Finally, the expression for ηρ is derived from matrix 5.34:

ηρ = −
ξ
[

2ρξ2 + (2ξ − 1) (ρ− 1)
]

4ρξ2 (2ρ− 1) + (ρ− 1)2 (2ξ − 1)
. (5.38)

A solution to equations 5.36 and 5.37 is obtained by manipulation. First
rearrange equation 5.36 for

ρξ (2ξ − 1) = ξ2 − ξ − 1; (5.39)

which, in turn, may be rearranged for

(ρ− 1) ξ (2ξ − 1) + ξ2 + 1 = 0; (5.40)

(2ρ− 1) ξ (2ξ − 1) + ξ2 + 1− ρξ (2ξ − 1) = 0.
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Equation 5.39 then simplifies this to

(2ρ− 1) ξ (2ξ − 1) + ξ + 2 = 0. (5.41)

Finally, the square bracketed term in equation 5.37 may be rearranged using
equation 5.39 for

2 [2 + ξ] ηρ = (2ξ − 1) ξ2. (5.42)

Equation 5.38 may be divided by 2ξ − 1 as this cannot be a solution
(substitution of it into equation 5.36 produces 5

4 = 0); this produces

ηρ
2ξ − 1

= −
[

2ρξ2 + (2ξ − 1) (ρ− 1)
]

ξ

4ρξ (2ξ − 1) (2ρ− 1) ξ + [(ρ− 1) (2ξ − 1)]2

=
2ρξ3 + (2ξ − 1) ξ (2ρ− 1)− ρξ (2ξ − 1)

4ρξ (ξ + 2)− [(ξ2 + 1) ξ−1]2
;

where the numerator has been expanded and the denominator simplified
by equations 5.41 and 5.40, respectively. Now simplify the numerator by
equation 5.41 for

ηρ
2ξ − 1

=
2ρξ3 − ξ − 2− ρξ (2ξ − 1)

4ρξ (ξ + 2)− (ξ2 + 1)2 ξ−2
;

and again by equation 5.39 for

ηρ
2ξ − 1

=
2ρξ3 −

(

ξ2 + 1
)

4ρξ (ξ + 2)− (ξ2 + 1)2 ξ−2

=
2ρξ3 −

(

ξ2 + 1
)

4ρξ3 − (ξ2+1)2

ξ+2

ξ2

ξ + 2
.

By equation 5.42, though,

ηρ
2ξ − 1

=
1
2ξ

2

2 + ξ
;

so that the above becomes

2ρξ3 −
(

ξ2 + 1
)

4ρξ3 − (ξ2+1)2

ξ+2

ξ2

ξ + 2
=

1
2ξ

2

2 + ξ
.

Removing the common factors leaves

2ρξ3 −
(

ξ2 + 1
)

=
1

2

[

4ρξ3 −
(

ξ2 + 1
)2

ξ + 2

]

;

2
(

ξ2 + 1
)

=

(

ξ2 + 1
)2

ξ + 2
.
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Pareto rank description E [u] = E [v] E
[

z2
]

1 first best −1
5E
[

ε2
]

1
25E

[

ε2
]

2 transfer game, x′ (z) < 0 −2
9E
[

ε2
]

1
9E
[

ε2
]

3 no transfer game, x′ (z) < 0 −5−
√
5

10 E
[

ε2
]

1
5E
[

ε2
]

4 transfer game, x′ (z) > 0 −2
5E
[

ε2
]

1
25E

[

ε2
]

5 no transfer game, x′ (z) > 0 −5+
√
5

10 E
[

ε2
]

1
5E
[

ε2
]

Table 5.1: Expected utility for symmetric agents

As ξ2 6= −1, this leaves a quadratic. Thus

(ρ, ξ) =

{(

1

3
,−1

)

,

(

1

3
, 3

)}

; (5.43)

satisfy the first order conditions.
Both roots satisfy the second order conditions of the second stage, as

identified by equations 5.29 and 5.30. As for those of the first stage, some
tedious algebra determines that (ρ, σ, ξ, η) =

(

1
3 ,

1
3 ,−1,−1

)

sets equation
5.35 to −1269

16 while (ρ, σ, ξ, η) =
(

1
3 ,

1
3 , 3, 3

)

sets it to −218565
16 . Thus both

real solutions are maxima. As ρ = σ > 0 in both cases, transfers are always
non-negative. Hence:

Theorem 5.24 The elements of equation 5.43 form a FNE of Problem 5.22
when emissions are constrained to be linear, and transfers quadratic.

Equation 5.31 allows calculation of expected payoffs. For (ρ, σ, ξ, η) =
(

1
3 ,

1
3 ,−1,−1

)

these are E [u] = E [v] = − 2
9E
[

ε2
]

while for (ρ, σ, ξ, η) =
(

1
3 ,

1
3 , 3, 3

)

they are E [u] = E [v] = − 2
5E
[

ε2
]

. Thus the two FNE are
Pareto ranked. Table 5.1 compares these expected payoffs to those arising
from the game without transfers and from the social planner’s solution.

As expected, the social planner’s outcome Pareto dominates. Otherwise,
while each equilibrium in the game with transfers is preferred to its counter-
part in the game without transfers, agents’ preferences between the games
will depend on the probabilities assigned to each of the two FNE by an
equilibrium selection mechanism.

One of the peculiar results in Table 5.1 is that expected variance of z for
the FNE that sets x as a positive function of z is as low as that of the first
best, and much less than its Pareto preferred alternative. This also stands
in contrast to the expected variance of z in the game without transfers; in
that case, both FNE yield the same result.

Asymmetric solutions Return to the general case in which symmetry
may not hold by using NAG’s hybrid Powell method root finder for non-
linear systems, c05tbc. This is used to simultaneously solve equations 5.27,
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5.28, 5.32 and 5.33. Initial (ρ, σ, ξ, η) seeds are randomly drawn from a uni-
form distribution over (−10, 10). Most seeds fail to make progress between
iterations, or exceed 200 iterations without finding roots. Even repeating
the programme until roots have been found successfully from 400 different
seeds only identifies the two symmetric real roots found in equation 5.43.
This suggests that there may not be asymmetric real equilibria to problem
5.22.

Against this optimistic belief, Bézout’s Theorem suggests that, in gen-
eral, the number of complex intersections is the product of the degrees of
the algebraic curves. In this case, as equations 5.27 and 5.28 are third order
in ρ, σ, ξ and η and equations 5.32 and 5.33 seem to be of eleventh order,
the product is 1089. It is somewhat unsettling, given this potentially large
number of roots, that no asymmetric equilibria have been found.

Linear emissions but general transfers

In this section, emission functions continue to be restricted to linear func-
tions, but general transfers, r (y) , s (x) ≥ 0, are now allowed.

The second stage Without first imposing the non-negativity constraints,
the problems at the second stage are to

max
z

E
[

− (z − y − ε)2 − z2 − r∗ (y) + s∗ (z − y − ε)
]

; (5.44)

max
z

E
[

− (z − x− ε)2 − z2 + r∗ (z − x− ε)− s∗ (x)
]

. (5.45)

These have first order conditions

−2x
(

1− y′
)

− 2z − r′y′ + s′
(

1− y′
)

= 0;

−2y
(

1− x′
)

− 2z + r′
(

1− x′
)

− s′x′ = 0.

If x (z) and y (z) are linear functions, then it is necessary that

[

−η 1− η
1− ξ −ξ

] [

r′ (y)
s′ (x)

]

= 2z

[

ξ (1− η) + 1
η (1− ξ) + 1

]

;

so that
[

r′ (y)
s′ (x)

]

=
2z

(1− ξ − η)

[

ξ2 − ξ2η − η2 + ξη2 − ξη + ξ + 1
−ξ2 + ξ2η + η2 − ξη2 − ξη + η + 1

]

;

when 1− ξ − η 6= 0. To integrate substitute out z for

[

r′ (y)
s′ (x)

]

=

[

2 ξ
2−ξ2η−η2+ξη2−ξη+ξ+1

(1−ξ−η)η y

2−ξ
2+ξ2η+η2−ξη2−ξη+η+1

(1−ξ−η)ξ x

]

;
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so that
[

r (y)
s (x)

]

=

[

ξ2−ξ2η−η2+ξη2−ξη+ξ+1
(1−ξ−η)η y2 + cy

−ξ2+ξ2η+η2−ξη2−ξη+η+1
(1−ξ−η)ξ x2 + cx

]

;

where cx, cy are constants of integration.

One sufficient condition that satisfies the non-negativity requirement on
transfers is that cx, cy = ∞. As this is unpalatable, it could be assumed
that cx, cy = 0, in keeping with the reasoning behind equation 5.26 that
previously set the constant to zero. In general, non-negativity would then
require determination of which regions in (ξ, η) space satisfy it. But this
is unnecessary: setting cx, cy = 0, returns the transfers to quadratic forms,
allowing application of the previous results. It is easily seen the ρ, σ, ξ, η
combinations presented in equation 5.43 are consistent with this more gen-
eral formulation.

Therefore:

Theorem 5.25 Given linear emissions functions, continuous transfer func-
tions capable of forming FNE to Problem 5.22 must be quadratic.

The linear-quadratic FNE in the broader functional space

This section does not constrain emission and transfer functions to be linear
or quadratic, as above. Instead, it merely requires that they be members
of C1. The principal question asked here is whether the FNE derived above
remain so in this broader functional space.

Lemma 5.26 Agent 1’s optimal emission function against

y (z) = −z;

s (x) =
1

3
x2; and

r (y) =
1

3
y2;

in Problem 5.22 is x (z) = −z.

Proof. Agent 1’s problem is to

max
x

E
[

−x2 − z2 − r (y) + s (x)
]

;

subject to the assumptions above and the state equation 5.1. These restric-
tions reduce the problem to

max
z

E

[

−4z2 + 8

3
zε− 2

3
ε2
]

;
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which has first order conditions setting

z =
1

3
ε.

By state equation 5.1 and y = −z,

x∗ = −z.

The same technique determines that agent the optimal emission function
against y (z) = 3z, s (x) = 1

3x
2 and r (y) = 1

3y
2 is x (z) = 3z. Thus, both of

the FNE in the restricted function space remain FNE.
It is more difficult to confirm that the quadratic transfers are optimal

when not constrained. The technique just used in the lemma cannot be
modified so that x (z) is fixed but r (y) is not as, given fixed emissions, agents
will not transfer. Previously, when functional forms were constrained, the
second stage calculations allowed derivation of best responses ξ (ρ, σ) and
η (ρ, σ). These, substituted into the first stage, then allowed a problem in ρ
and σ. This approach was possible as the assumption of quadratic transfer
functions allowed these functions to be identified by a single parameter,
something that cannot be done in general. As a result, only a conjecture is
presented here:

Conjecture 5.27 When admissible strategy functions in Problem 5.22 are
members of C1, strategies supporting a FNE depend on the distribution of
the stochastic variable, ε. Thus, linear emissions and quadratic transfers do
not generally support a FNE.

This conjecture is supported by initial calculations in which the agents’
problems are reduced to optimal control problems of the standard forms in
which the co-state equations depend on the distribution of ε.

5.6 Discussion

This chapter has presented a number of results for specific models. First,
models displaying both existence and non-existence of FNE were presented.
In the first model with an FNE, a result different from that in in Klemperer
and Meyer [KM89] was found. In their linear model, increasing the support
of the stochastic variable decreases the size of the equilibrium set in their
work, by requiring the second order conditions to hold over a larger domain.
Here, the results simply rely on a non-degenerate support for the stochastic
variable.

Thirdly, a social planner can implement the first best (linear) emissions
by designing quadratic transfers. While these transfers do not necessarily
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support non-cooperative equilibria, they did provide an initial guess that
equilibrium transfers might also be quadratic. FNE were found when func-
tions were restricted to be linear (for emissions) and quadratic (for trans-
fers), but it is not expected that these results hold when the functions are
less constrained.

The constraints on the functions in the game with transfers make the
resulting FNE difficult to compare to those in the game without transfers.
The comparison presented in Table 5.1 suggests that, while transfers may
allow Pareto improvements even when they net out in equilibrium, they
do not necessarily do so. It is unclear whether broadening the function
spaces from which emission and transfer functions can be selected will Pareto
improve or worsen the resulting FNE: if the game is regarded principally as
a control problem then the broader control space can only be of benefit; if,
though, it is regarded as a cooperation problem, then the extra freedom may
give agents another means of engaging in strategic behaviour.

This chapter also leaves open some further questions. For example, are
there non-linear FNE in the quadratic model without transfers? While the
differential games examined previously are clearly different to the one-shot
games examined here, they do suggest that non-linear strategies may be un-
usual in games with linear state equations are quadratic objective functions.

Is it possible to make general statements about when additional con-
trol variables allow Pareto improvements? On the surface, this question
resembles somewhat that of when adding an additional instrument in an
incomplete market is Pareto improving. An obvious difference, of course,
is that one of these situations is a game while the other is a market; more
generally, it is not clear whether this parallel has analytical importance.

Finally, the present agents are defined in a symmetric fashion, differing
only by ±δ. To the extent that FNE are of interest, they are likely to be of
interest when players may differ in other ways as well.



Chapter 6

Conclusions

This thesis set out to examine the question of how greenhouse gas emissions
might evolve in the absence of an enforceable mechanism for international
cooperation. This complicated question has been addressed by exploring
two more tractable questions. The first involved examination of a linear-
quadratic differential game, the second one-shot games in which emissions
and transfers were specified as functions.

Improved analysis of non-linear strategies in the linear-quadratic game
has provided two new results. First, the 1990 continuum result of Tsutsui
and Mino [TM90] for symmetric play by symmetric agents is qualified: the
non-linear continuum, previously thought to survive under all conditions, is
seen only to survive under certain calibrations. No meaningful economic in-
tuition could be found to explain the conditions under which the continuum
survives.

This qualification was achieved by noting that admissible strategies must
allow agents to calculate the consequences of playing all admissible devia-
tions from proposed equilibrium play. This recognition was important in
analysis of both questions addressed by this thesis.

As Tsutsui and Mino’s continuum result had been used as the basis for
other results with non-linear strategies, the present qualification hopefully
provides a firmer basis for future developments in this area. As differential
games provide a natural generalisation of both optimal control problems and
single-shot games, this firmer footing may be very useful.

The second set of results derive from numerical analysis of asymmetric
play and asymmetric agents. This suggests that no asymmetric non-linear
strategies exist. At present, the evidence for this is merely strong rather
than conclusive. The interpretation of this finding seems simply to be that
the symmetric case, as a degenerate case, has properties not shared by asym-
metric cases. From a computational point of view, the uniqueness of linear
MPE in linear-quadratic games is desirable: its calculation is considerably
simpler than that of non-linear strategies.

127
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Obviously, the class of linear-quadratic games is very restricted within
the larger world of differential games. There is therefore no reason to believe
that any of the results on linear-quadratic games carry over to the more
general setting. However, the numerical tools developed in this thesis can be
applied to these more general settings by changing the differential equations
being solved.

There is clearly room for further development of differential games’ use
in the study of non-cooperative greenhouse gas emissions. The numerical
techniques used here allow more plausible functional forms and richer inter-
actions than those used here (for reasons of tractability and benchmarking)
to be specified without much difficulty. More difficult to incorporate, but
equally plausible, would be time-varying characteristics. Similarly, there are
at least two sources of uncertainty in the practical problem: understanding
of how the climate system responds to anthropogenic emissions is still quite
limited; and knowledge about the relationship between climate and national
welfare is lacking.

An interest in transfers led to analysis of functional Nash equilibria in
the one-shot game. This has provided some additional insight into con-
ditions under which models may fail to have FNE. Second, and perhaps
more importantly, a model has been presented in which uncertainty’s role
in refining the equilibrium set is more dramatic than it is in Klemperer and
Meyer’s study [KM89]. Third, it has been demonstrated that the addition
of a second instrument can be Pareto improving. This result still deserves
further elaboration as the games with and without transfers cannot yet be
Pareto ranked.

To the extent that the one-shot game is regarded as a special case of the
earlier differential game, a fourth observation may also be made, weaken-
ing that claim: while the differential games yielded a single linear solution,
the functional games studied yield two linear solutions, one upward sloping
and one downward. The latter is more consistent with the finding in the
differential game but, in the absence of any further selection mechanism,
has nothing to argue for it over the upward sloping strategy. As in the dif-
ferential game, it is possible that these multiple equilibria are a feature of
symmetric agents and play.

Returning to the thesis’ motivating question, some extensions to the
existing work suggest themselves. First, calibration is ultimately necessary
to address this practical question. There is, though, a trade-off between
calibrating a simple model and trying to develop a more sophisticated model.
The possibilities for the latter are certainly plentiful. Strategies, for example,
have been assumed continuous throughout this thesis. While this may often
be plausible, it would be preferable were continuity derived rather than
assumed. One approach to discontinuous strategies makes use of Skiba’s
Theorem, whereby control discontinuities occur in such a way as to maintain
value function continuity [Ski78]. Jensen and Lockwood present conditions
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sufficient to rule out the possibility of discontinuous strategies in affine-
quadratic differential games [JL98]. These, at it turns out, are identical
to the sufficient conditions for unique affine MPE strategies presented in
Lockwood [Loc96], suggesting that the differential games examined here do
not admit discontinuous strategies.
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